login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for #262 Local variables in output revision 1 of 5

1 2 3 4 5
Editor:
Time: 2007/11/17 22:17:39 GMT-8
Note:

changed:
-
In some cases Axiom's output contains temporary names such
as '%x0' standing for subexpressions that are not properly
substituted into the final result. For example:
\begin{axiom}
eq:=-cos(12*x)+x^2+x^3
zerosOf(eq,x)
\end{axiom}

From kratt6 Thu Feb 2 09:50:56 -0600 2006
From: kratt6
Date: Thu, 02 Feb 2006 09:50:56 -0600
Subject: not really temporary
Message-ID: <20060202095056-0600@wiki.axiom-developer.org>

These names are not really temporary:

\begin{axiom}
definingPolynomial %x0
\end{axiom}

(However, I think they should be...)

From kratt6 Thu Feb 2 09:55:41 -0600 2006
From: kratt6
Date: Thu, 02 Feb 2006 09:55:41 -0600
Subject: 
Message-ID: <20060202095541-0600@wiki.axiom-developer.org>

Note that the expression (3) surfaces another bug in the solver: the variable 'x' should not appear in the defining polynomial of '%x0'...

Martin

Submitted by : (unknown) at: 2007-11-17T22:17:39-08:00 (14 years ago)
Name :
Axiom Version :
Category : Severity : Status :
Optional subject :  
Optional comment :

In some cases Axiom's output contains temporary names such as %x0 standing for subexpressions that are not properly substituted into the final result. For example:

axiom
eq:=-cos(12*x)+x^2+x^3

\label{eq1}-{\cos \left({{12}\  x}\right)}+{x^3}+{x^2}(1)
Type: Expression(Integer)
axiom
zerosOf(eq,x)

\label{eq2}\begin{array}{@{}l}
\displaystyle
\left[ \%x 0, \:{{{\sqrt{-{3 \ {\%x 0^2}}-{2 \  \%x 0}+ 1}}- \%x 0 - 1}\over 2}, \: \right.
\
\
\displaystyle
\left.{{-{\sqrt{-{3 \ {\%x 0^2}}-{2 \  \%x 0}+ 1}}- \%x 0 - 1}\over 2}\right] 
(2)
Type: List(Expression(Integer))

not really temporary --kratt6, Thu, 02 Feb 2006 09:50:56 -0600 reply
These names are not really temporary:

axiom
definingPolynomial %x0

\label{eq3}-{\cos \left({{12}\  x}\right)}+{\%x 0^3}+{\%x 0^2}(3)
Type: Expression(Integer)

(However, I think they should be...)

Note that the expression (3) surfaces another bug in the solver: the variable x should not appear in the defining polynomial of %x0...

Martin