login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

I want to get (estimates of) the eigenvalues of a 10x10 matrix of floats:

fricas
m := matrix([[random(1000)$Integer for i in 1..10] for j in 1..10]); sm := m + transpose(m); smf:Matrix Float := sm

\label{eq1}\left[ 
\begin{array}{cccccccccc}
{1720.0}&{857.0}&{911.0}&{1365.0}&{1144.0}&{1441.0}&{940.0}&{1
450.0}&{1184.0}&{1078.0}
\
{857.0}&{1098.0}&{469.0}&{679.0}&{537.0}&{733.0}&{1088.0}&{89
4.0}&{1628.0}&{1526.0}
\
{911.0}&{469.0}&{358.0}&{360.0}&{825.0}&{1102.0}&{666.0}&{108
2.0}&{775.0}&{1134.0}
\
{1365.0}&{679.0}&{360.0}&{756.0}&{1070.0}&{245.0}&{1177.0}&{7
56.0}&{1719.0}&{647.0}
\
{1144.0}&{537.0}&{825.0}&{1070.0}&{906.0}&{442.0}&{797.0}&{66
5.0}&{749.0}&{990.0}
\
{1441.0}&{733.0}&{1102.0}&{245.0}&{442.0}&{100.0}&{1270.0}&{1
145.0}&{283.0}&{1204.0}
\
{940.0}&{1088.0}&{666.0}&{1177.0}&{797.0}&{1270.0}&{1736.0}&{4
85.0}&{343.0}&{1312.0}
\
{1450.0}&{894.0}&{1082.0}&{756.0}&{665.0}&{1145.0}&{485.0}&{1
168.0}&{1043.0}&{656.0}
\
{1184.0}&{1628.0}&{775.0}&{1719.0}&{749.0}&{283.0}&{343.0}&{1
043.0}&{1040.0}&{1385.0}
\
{1078.0}&{1526.0}&{1134.0}&{647.0}&{990.0}&{1204.0}&{1312.0}&{6
56.0}&{1385.0}&{178.0}
(1)
Type: Matrix(Float)

The problem is: If I now call eigenvalues(smf) on the symmetric float matrix smf Axiom 3.0 Beta (February 2005) runs for a very long time (uncomment code if you want to try it):

fricas
)set messages time on

Try this::

fricas
)set output tex off
 
fricas
)set output algebra on
eigen:=eigenvalues(sm)
(2) [ %B | 10 9 8 7 6 %B - 9060 %B - 10221631 %B + 53692462934 %B + 32991488690592 %B + 5 4 - 103347836372632698 %B - 39496518001034749286 %B + 3 2 67792682723480658193502 %B + 13238675729925514491568164 %B + - 6411346841697177723823479672 %B - 777550587908816635397837762624 ]
Type: List(Union(Fraction(Polynomial(Integer)),SuchThat?(Symbol,Polynomial(Integer))))
fricas
Time: 0.07 (OT) = 0.07 sec
solve(rhs(eigen.1),10.0^(-15))
(3) [%B = - 110.9548091175_7676212, %B = - 367.9868971146_480825, %B = - 1238.2551231278_173671, %B = - 1395.4394073487_777468, %B = - 1651.8389981628_01269, %B = 9515.9502244910_992075, %B = 1609.8532163864_54188, %B = 1401.1491995200_013201, %B = 980.4992467521_7715242, %B = 317.0233477218_8936052]
Type: List(Equation(Polynomial(Float)))
fricas
Time: 0.01 (EV) + 0.01 (OT) = 0.02 sec

Thank you! This helps, but doesn't answer everything. Since interestingly:

fricas
charpol := reduce(*, [ rhs(x) - lhs(x) for x in % ])
(4) 10 9 8 %B - 9060.0000000000_000009 %B - 10221630.9999999999_9 %B + 7 6 5_3692462934.000000007 %B + 3299_1488690591.999971 %B + 5 4 - 10334783_6372632698.02 %B - 3949651800_1034749284.0 %B + 3 2 0.6779268272_3480658214 E 23 %B + 0.1323867572_9925514525 E 26 %B + - 0.6411346841_6971777309 E 28 %B - 0.7775505879_0881663822 E 30
Type: Polynomial(Float)
fricas
Time: 0 sec

we cannot recover the characteristic polynomial from this solution.

To recover characteristic polynomial one needs good precision, which means very small second argument to solve.

To have use of precise solution we also need to increase precision of other floating point computations using digits. Unfortunately, this leads to ugly display, so we only show final result:

fricas
digits(40)
(5) 20
Type: PositiveInteger?
fricas
Time: 0 sec
ev:= solve(rhs(eigen.1),1.0*10^(-35));
Type: List(Equation(Polynomial(Float)))
fricas
Time: 0.01 (EV) + 0.01 (OT) = 0.02 sec
cp:= reduce(*, [rhs(x)-lhs(x) for x in ev])
(7) 10 9 8 %B - 9060.0 %B - 10221630.9999999999_9999999999_9999999999_98 %B + 7 5_3692462933.9999999999_9999999999_999999996 %B + 6 3299_1488690591.9999999999_9999999999_999998 %B + 5 - 10334783_6372632697.9999999999_9999999999_97 %B + 4 - 3949651800_1034749286.0000000000_0000000017 %B + 3 677_9268272348_0658193501.9999999999_9999964 %B + 2 132386_7572992551_4491568164.0000000000_002 %B + - 64113468_4169717772_3823479671.9999999999_53 %B + - 7775505879_0881663539_7837762624.0000000043
Type: Polynomial(Float)
fricas
Time: 0 sec
rhs(eigen.1) - cp
(8) 8 7 6 5 - 0.2 E -31 %B + 0.4 E -28 %B + 0.2 E -25 %B - 0.3 E -21 %B + 4 3 2 0.2 E -18 %B + 0.4 E -15 %B - 0.2 E -12 %B - 0.5 E -10 %B + 0.4 E -8
Type: Polynomial(Float)
fricas
Time: 0 sec
fricas
)set output algebra off
 
fricas
)set output tex on

For matrices of expressions one has to explicitly specify package:

fricas
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]

\label{eq2}\left[ 
\begin{array}{cc}
{\cos \left({x}\right)}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{\cos \left({x}\right)}
(2)
Type: Matrix(Expression(Integer))
fricas
Time: 0.05 (OT) = 0.05 sec
A(1,1)

\label{eq3}\cos \left({x}\right)(3)
Type: Expression(Integer)
fricas
Time: 0 sec
eigen:=eigenvalues(A)$InnerEigenPackage(EXPR(INT))

\label{eq4}\left[{{{?}^{2}}-{2 \ {\cos \left({x}\right)}\  ?}+{{\sin \left({x}\right)}^{2}}+{{\cos \left({x}\right)}^{2}}}\right](4)
Type: List(Union(Expression(Integer),SparseUnivariatePolynomial?(Expression(Integer))))
fricas
Time: 0 sec

Unfortunatly, result is unsimplified, siplification is separate, for example

fricas
map(simplify, eigen(1))

\label{eq5}{{?}^{2}}-{2 \ {\cos \left({x}\right)}\  ?}+ 1(5)
Type: SparseUnivariatePolynomial?(Expression(Integer))
fricas
Time: 0.02 (OT) = 0.02 sec

fricas
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]

\label{eq6}\left[ 
\begin{array}{cc}
{{\cos \left({x}\right)}- L}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{{\cos \left({x}\right)}- L}
(6)
Type: Matrix(Expression(Integer))
fricas
Time: 0 sec
A(1,1)*A(2,2)

\label{eq7}{{\cos \left({x}\right)}^{2}}-{2 \  L \ {\cos \left({x}\right)}}+{{L}^{2}}(7)
Type: Expression(Integer)
fricas
Time: 0 sec
A(2,1)*A(1,2)

\label{eq8}-{{\sin \left({x}\right)}^{2}}(8)
Type: Expression(Integer)
fricas
Time: 0 sec
A(1,1)*A(2,2)-A(2,1)*A(1,2)

\label{eq9}{{\sin \left({x}\right)}^{2}}+{{\cos \left({x}\right)}^{2}}-{2 \  L \ {\cos \left({x}\right)}}+{{L}^{2}}(9)
Type: Expression(Integer)
fricas
Time: 0 sec
B := solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)

\label{eq10}\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right](10)
Type: List(Equation(Expression(Integer)))
fricas
Time: 0.01 (IN) + 0.01 (OT) = 0.02 sec
B(1)

\label{eq11}L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}(11)
Type: Equation(Expression(Integer))
fricas
Time: 0 sec

fricas
solve(x^2 - 2,x)

\label{eq12}\left[{{{{x}^{2}}- 2}= 0}\right](12)
Type: List(Equation(Fraction(Polynomial(Integer))))
fricas
Time: 0 sec
sqrt(2)

\label{eq13}\sqrt{2}(13)
Type: AlgebraicNumber?
fricas
Time: 0 sec
solve(x^2=4,x)

\label{eq14}\left[{x = 2}, \:{x = - 2}\right](14)
Type: List(Equation(Fraction(Polynomial(Integer))))
fricas
Time: 0.01 (IN) = 0.01 sec

fricas
P:=matrix[[a, b], [1.0 - a, 1.0 - b]]

\label{eq15}\left[ 
\begin{array}{cc}
a & b 
\
{-{{1.0}\  a}+{1.0}}&{-{{1.0}\  b}+{1.0}}
(15)
Type: Matrix(Polynomial(Float))
fricas
Time: 0 sec
eigenvectors(P)
There are 1 exposed and 1 unexposed library operations named eigenvectors having 1 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op eigenvectors to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named eigenvectors with argument type(s) Matrix(Polynomial(Float))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.




  Subject: (replying)   Be Bold !!
  ( 15 subscribers )  
Please rate this page: