login  home  contents  what's new  discussion  bug reports help  links  subscribe  changes  refresh  edit

# Edit detail for SandBoxOp revision 3 of 3

 1 2 3 Editor: Bill Page Time: 2015/03/06 17:32:50 GMT+0 Note:

```added:
deleteProperty!(op','%diff)
```

Conjugate opertors

```)abbrev domain BOP BasicOperator
++ Basic system operators
++ Author: Manuel Bronstein
++ Date Created: 22 March 1988
++ Date Last Updated: 11 October 1993
++ Description:
++   A basic operator is an object that can be applied to a list of
++   arguments from a set, the result being a kernel over that set.
++ Keywords: operator, kernel.
BasicOperator() : Exports == Implementation where
O   ==> OutputForm
P   ==> AssociationList(Symbol, None)
L   ==> List Record(key : Symbol, entry : None)
SEX ==> InputForm
Exports ==> OrderedSet with
name      : % -> Symbol
++ name(op) returns the name of op.
properties : % -> P
++ properties(op) returns the list of all the properties
++ currently attached to op.
copy      : % -> %
++ copy(op) returns a copy of op.
conjugate : % -> %
++ conjugate(op) returns the conjugate of op
operator  : Symbol -> %
++ operator(f) makes f into an operator with arbitrary arity.
operator  : (Symbol, NonNegativeInteger) -> %
++ operator(f, n) makes f into an n-ary operator.
arity     : % -> Union(NonNegativeInteger, "failed")
++ arity(op) returns n if op is n-ary, and
++ "failed" if op has arbitrary arity.
nullary?  : % -> Boolean
++ nullary?(op) tests if op is nullary.
unary?    : % -> Boolean
++ unary?(op) tests if op is unary.
nary?     : % -> Boolean
++ nary?(op) tests if op has arbitrary arity.
weight    : % -> NonNegativeInteger
++ weight(op) returns the weight attached to op.
weight    : (%, NonNegativeInteger) -> %
++ weight(op, n) attaches the weight n to op.
equality   : (%, (%, %) -> Boolean) -> %
++ equality(op, foo?) attaches foo? as the "%equal?" property
++ to op. If op1 and op2 have the same name, and one of them
++ has an "%equal?" property f, then \spad{f(op1, op2)} is called to
++ decide whether op1 and op2 should be considered equal.
comparison : (%, (%, %) -> Boolean) -> %
++ comparison(op, foo?) attaches foo? as the "%less?" property
++ to op. If op1 and op2 have the same name, and one of them
++ has a "%less?" property f, then \spad{f(op1, op2)} is called to
++ decide whether \spad{op1 < op2}.
display    : % -> Union(List O -> O, "failed")
++ display(op) returns the "%display" property of op if
++ it has one attached, and "failed" otherwise.
display    : (%, List O -> O)      -> %
++ display(op, foo) attaches foo as the "%display" property
++ of op. If op has a "%display" property f, then \spad{op(a1,...,an)}
++ gets converted to OutputForm as \spad{f(a1, ..., an)}.
display    : (%, O -> O)           -> %
++ display(op, foo) attaches foo as the "%display" property
++ of op. If op has a "%display" property f, then \spad{op(a)}
++ gets converted to OutputForm as \spad{f(a)}.
++ Argument op must be unary.
input      : (%, List SEX -> SEX)  -> %
++ input(op, foo) attaches foo as the "%input" property
++ of op. If op has a "%input" property f, then \spad{op(a1,...,an)}
++ gets converted to InputForm as \spad{f(a1, ..., an)}.
input      : % -> Union(List SEX -> SEX, "failed")
++ input(op) returns the "%input" property of op if
++ it has one attached, "failed" otherwise.
is?        : (%, Symbol) -> Boolean
++ is?(op, s) tests if the name of op is s.
has?       : (%, Symbol) -> Boolean
++ has?(op, s) tests if property s is attached to op.
assert     : (%, Symbol) -> %
++ assert(op, s) attaches property s to op.
++ Argument op is modified "in place", i.e. no copy is made.
deleteProperty! : (%, Symbol) -> %
++ deleteProperty!(op, s) unattaches property s from op.
++ Argument op is modified "in place", i.e. no copy is made.
property      : (%, Symbol) -> Union(None, "failed")
++ property(op, s) returns the value of property s if
++ it is attached to op, and "failed" otherwise.
setProperty   : (%, Symbol, None) -> %
++ setProperty(op, s, v) attaches property s to op,
++ and sets its value to v.
++ Argument op is modified "in place", i.e. no copy is made.
setProperties : (%, P) -> %
++ setProperties(op, l) sets the property list of op to l.
++ Argument op is modified "in place", i.e. no copy is made.
-- if narg < 0 then the operator has variable arity.
Rep := Record(opname : Symbol, narg : SingleInteger, props : P)
import from P
import from SingleInteger
import from NonNegativeInteger
import from Set(Symbol)
-- some internal properties
LESS?   := "%less?"::Symbol
EQUAL?  := "%equal?"::Symbol
WEIGHT  := '%weight
DISPLAY := '%display
SEXPR   := '%input
CONJ    := '%conjugate
DIFFDISP:= '%diffDisp
oper : (Symbol, SingleInteger, P) -> %
is?(op, s)           == name(op) = s
name op              == op.opname
properties op        == op.props
setProperties(op, l) == (op.props := l; op)
operator s           == oper(s, -1::SingleInteger, table())
operator(s, n)       == oper(s, n::Integer::SingleInteger, table())
property(op, name)   == search(name, op.props)
assert(op, s)        == setProperty(op, s, NIL\$Lisp)
has?(op, name)       == key?(name, op.props)
oper(se, n, prop)    == [se, n, prop]
weight(op, n)        == setProperty(op, WEIGHT, n pretend None)
nullary? op          == zero?(op.narg)
--    unary? op            == one?(op.narg)
unary? op            == ((op.narg) = 1)
nary? op             == negative?(op.narg)
equality(op, func)   == setProperty(op, EQUAL?, func pretend None)
comparison(op, func) == setProperty(op, LESS?, func pretend None)
display(op : %, f : O -> O)        == display(op, (l1 : List(O)) : O +-> f first l1)
deleteProperty!(op, name)     == (remove!(name, properties op); op)
setProperty(op, name, valu)    == (op.props.name := valu; op)
coerce(op : %) : OutputForm        == name(op)::OutputForm
input(op : %, f : List SEX -> SEX) == setProperty(op, SEXPR, f pretend None)
display(op : %, f : List O -> O)   == setProperty(op, DISPLAY, f pretend None)
diffDisp(op : %, f : List O -> O):%  == setProperty(op, DIFFDISP, f pretend None)
display op ==
(u := property(op, DISPLAY)) case "failed" => "failed"
(u::None) pretend (List O -> O)
input op ==
(u := property(op, SEXPR)) case "failed" => "failed"
(u::None) pretend (List SEX -> SEX)
arity op ==
negative?(n := op.narg) => "failed"
convert(n)@Integer :: NonNegativeInteger
copy op ==
oper(name op, op.narg,
table([[r.key, r.entry] for r in entries(properties op)@L]\$L))
conjugate op ==
(op?:=property(op,CONJ)) case None => op?::None pretend %
--op' := copy op
op' := oper(superscript(name op,["*"::Symbol::O]), op.narg,
table([[r.key, r.entry] for r in entries(properties op)@L]\$L))
setProperty(op, CONJ, op' pretend None)
setProperty(op', CONJ, op pretend None)
deleteProperty!(op','%eval)
deleteProperty!(op','%diff)
--display(op',(a:List O):O+->prefix(overbar(op::O),a))
--diffDisp(op',(a:List O):O+->prefix(overbar(first a),rest a))
op'
-- property EQUAL? contains a function f: (BOP, BOP) -> Boolean
-- such that f(o1, o2) is true iff o1 = o2
op1 = op2 ==
(EQ\$Lisp)(op1, op2) => true
name(op1) ~= name(op2) => false
op1.narg ~= op2.narg => false
brace(keys properties op1) ~=\$Set(Symbol) brace(keys properties op2) => false
(func := property(op1, EQUAL?)) case None =>
((func::None) pretend ((%, %) -> Boolean)) (op1, op2)
true
-- property WEIGHT allows one to change the ordering around
-- by default, every operator has weigth 1
weight op ==
(w := property(op, WEIGHT)) case "failed" => 1
(w::None) pretend NonNegativeInteger
-- property LESS? contains a function f: (BOP, BOP) -> Boolean
-- such that f(o1, o2) is true iff o1 < o2
op1 < op2 ==
(w1 := weight op1) ~= (w2 := weight op2) => w1 < w2
op1.narg ~= op2.narg => op1.narg < op2.narg
name(op1) ~= name(op2) => name(op1) < name(op2)
n1 := #(k1 := brace(keys(properties op1))\$Set(Symbol))
n2 := #(k2 := brace(keys(properties op2))\$Set(Symbol))
n1 ~= n2 => n1 < n2
not zero?(n1 := #(d1 := difference(k1, k2))) =>
n1 ~= (n2 := #(d2 := difference(k2, k1))) => n1 < n2
inspect(d1) < inspect(d2)
(func := property(op1, LESS?)) case None =>
((func::None) pretend ((%, %) -> Boolean)) (op1, op2)
(func := property(op1, EQUAL?)) case None =>
not(((func::None) pretend ((%, %) -> Boolean)) (op1, op2))
false
)abbrev package BOP1 BasicOperatorFunctions1
++ Tools to set/get common properties of operators
++ Author: Manuel Bronstein
++ Date Created: 28 Mar 1988
++ Date Last Updated: 15 May 1990
++ Description:
++   This package exports functions to set some commonly used properties
++   of operators, including properties which contain functions.
++ Keywords: operator.
BasicOperatorFunctions1(A : SetCategory) : Exports == Implementation where
OP   ==> BasicOperator
Exports ==> with
evaluate        : (OP, List A)      -> Union(A, "failed")
++ evaluate(op, [a1,...,an]) checks if op has an "%eval"
++ property f. If it has, then \spad{f(a1, ..., an)} is returned, and
++ "failed" otherwise.
evaluate        : (OP, List A -> A) -> OP
++ evaluate(op, foo) attaches foo as the "%eval" property
++ of op. If op has an "%eval" property f, then applying op
++ to \spad{(a1, ..., an)} returns the result of \spad{f(a1, ..., an)}.
evaluate        : (OP, A -> A)      -> OP
++ evaluate(op, foo) attaches foo as the "%eval" property
++ of op. If op has an "%eval" property f, then applying op
++ to a returns the result of \spad{f(a)}. Argument op must be unary.
evaluate        : OP                -> Union(List A -> A, "failed")
++ evaluate(op) returns the value of the "%eval" property of
++ op if it has one, and "failed" otherwise.
derivative      : (OP, List (List A -> A)) -> OP
++ derivative(op, [foo1, ..., foon]) attaches [foo1, ..., foon] as
++ the "%diff" property of op. If op has an "%diff" property
++ \spad{[f1, ..., fn]} then applying a derivation D to \spad{op(a1, ..., an)}
++ returns \spad{f1(a1, ..., an) * D(a1) + ... + fn(a1, ..., an) * D(an)}.
derivative      : (OP, A -> A) -> OP
++ derivative(op, foo) attaches foo as the "%diff" property
++ of op. If op has an "%diff" property f, then applying a
++ derivation D to op(a) returns \spad{f(a) * D(a)}. Argument op must be unary.
derivative      : OP -> Union(List(List A -> A), "failed")
++ derivative(op) returns the value of the "%diff" property of
++ op if it has one, and "failed" otherwise.
constantOperator : A -> OP
++ constantOperator(a) returns a nullary operator op
constantOpIfCan : OP -> Union(A, "failed")
++ constantOpIfCan(op) returns \spad{a} if op is the constant
++ nullary operator always returning \spad{a}, "failed" otherwise.
EVAL    := '%eval
CONST   := '%constant
DIFF    := '%diff
evaluate(op : OP, func : A -> A) == evaluate(op, (l1 : List(A)) : A +-> func first l1)
evaluate op ==
(func := property(op, EVAL)) case "failed" => "failed"
(func::None) pretend (List A -> A)
evaluate(op : OP, args : List A) ==
(func := property(op, EVAL)) case "failed" => "failed"
((func::None) pretend (List A -> A)) args
evaluate(op : OP, func : List A -> A) ==
setProperty(op, EVAL, func pretend None)
derivative op ==
(func := property(op, DIFF)) case "failed" => "failed"
((func::None) pretend List(List A -> A))
derivative(op : OP, grad : List(List A -> A)) ==
derivative(op : OP, f : A -> A) ==
unary? op or nary? op =>
derivative(op, [(l1 : List(A)) : A +-> f first l1]\$List(List A -> A))
error "Operator is not unary"
cdisp   : (OutputForm, List OutputForm) -> OutputForm
csex    : (InputForm,  List InputForm) -> InputForm
eqconst? : (OP, OP) -> Boolean
constOp : A -> OP
cdisp(a, l) == a
csex(a, l)  == a
eqconst?(a, b) ==
(va := property(a, CONST)) case "failed" => not has?(b, CONST)
((vb := property(b, CONST)) case None) and
((va::None) pretend A) = ((vb::None) pretend A)
opconst : OP
if A has Comparable then
ltconst? : (OP, OP) -> Boolean
ltconst?(a, b) ==
(va := property(a, CONST)) case "failed" => has?(b, CONST)
((vb := property(b, CONST)) case None) and
smaller?((va::None) pretend A, (vb::None) pretend A)
opconst :=
comparison(equality(operator('constant, 0), eqconst?), ltconst?)
else
opconst := equality(operator('constant, 0), eqconst?)
constOp a ==
setProperty(display(copy opconst,
(l1 : List(OutputForm)) : OutputForm +-> cdisp(a::OutputForm, l1)),
CONST, a pretend None)
constantOpIfCan op ==
is?(op, 'constant) and
((u := property(op, CONST)) case None) => (u::None) pretend A
"failed"
if A has ConvertibleTo InputForm then
constantOperator a == input(constOp a,  (l1 : List(InputForm)) : InputForm +-> csex(convert a, l1))
else
constantOperator a == constOp a
)abbrev package COMMONOP CommonOperators
++ Provides commonly used operators
++ Author: Manuel Bronstein
++ Date Created: 25 Mar 1988
++ Date Last Updated: 2 December 1994
++ Description:
++ This package exports the elementary operators, with some semantics
++ already attached to them. The semantics that is attached here is not
++ dependent on the set in which the operators will be applied.
++ Keywords: operator.
CommonOperators() : Exports == Implementation where
OP  ==> BasicOperator
O   ==> OutputForm
POWER ==> '%power
ALGOP ==> '%alg
EVEN  ==> 'even
ODD   ==> 'odd
DUMMYVAR ==> '%dummyVar
Exports ==> with
operator : Symbol -> OP
++ operator(s) returns an operator with name s, with the
++ appropriate semantics if s is known. If s is not known,
++ the result has no semantics.
dpi        : List O -> O
dgamma     : List O -> O
dquote     : List O -> O
dexp       : O -> O
dfact      : O -> O
startUp    : Boolean -> Void
setDummyVar : (OP, NonNegativeInteger) -> OP
brandNew? : Reference(Boolean) := ref true
opalg   := operator('rootOf, 2)\$OP
oproot  := operator('nthRoot, 2)
oppi    := operator('pi, 0)
oplog   := operator('log, 1)
opexp   := operator('exp, 1)
opabs   := operator('abs, 1)
opsin   := operator('sin, 1)
opcos   := operator('cos, 1)
optan   := operator('tan, 1)
opcot   := operator('cot, 1)
opsec   := operator('sec, 1)
opcsc   := operator('csc, 1)
opasin  := operator('asin, 1)
opacos  := operator('acos, 1)
opatan  := operator('atan, 1)
opacot  := operator('acot, 1)
opasec  := operator('asec, 1)
opacsc  := operator('acsc, 1)
opsinh  := operator('sinh, 1)
opcosh  := operator('cosh, 1)
optanh  := operator('tanh, 1)
opcoth  := operator('coth, 1)
opsech  := operator('sech, 1)
opcsch  := operator('csch, 1)
opasinh := operator('asinh, 1)
opacosh := operator('acosh, 1)
opatanh := operator('atanh, 1)
opacoth := operator('acoth, 1)
opasech := operator('asech, 1)
opacsch := operator('acsch, 1)
opbox   := operator('%box)\$OP
oppren  := operator('%paren)\$OP
opquote := operator('%quote)\$OP
opdiff  := operator('%diff, 3)
opsi    := operator('Si, 1)
opci    := operator('Ci, 1)
opshi   := operator('Shi, 1)
opchi   := operator('Chi, 1)
opei    := operator('Ei, 1)
opli    := operator('li, 1)
operf   := operator('erf, 1)
operfi  := operator('erfi, 1)
opli2   := operator('dilog, 1)
opfis   := operator('fresnelS, 1)
opfic   := operator('fresnelC, 1)
opGamma     := operator('Gamma, 1)
opGamma2    := operator('Gamma2, 2)
opBeta      := operator('Beta, 2)
opdigamma   := operator('digamma, 1)
oppolygamma := operator('polygamma, 2)
opBesselJ   := operator('besselJ, 2)
opBesselY   := operator('besselY, 2)
opBesselI   := operator('besselI, 2)
opBesselK   := operator('besselK, 2)
opAiryAi    := operator('airyAi,  1)
opAiryAiPrime := operator('airyAiPrime,  1)
opAiryBi    := operator('airyBi , 1)
opAiryBiPrime := operator('airyBiPrime,  1)
opLambertW := operator('lambertW,  1)
opPolylog := operator('polylog, 2)
opWeierstrassP := operator('weierstrassP, 3)
opWeierstrassPPrime := operator('weierstrassPPrime, 3)
opWeierstrassSigma := operator('weierstrassSigma, 3)
opWeierstrassZeta := operator('weierstrassZeta, 3)
-- arbitrary arity
opHypergeometricF := operator('hypergeometricF)\$BasicOperator
opMeijerG := operator('meijerG)\$BasicOperator
opWhittakerM := operator('whittakerM, 3)\$OP
opWhittakerW := operator('whittakerW, 3)\$OP
opAngerJ := operator('angerJ, 2)\$OP
opWeberE := operator('weberE, 2)\$OP
opStruveH := operator('struveH, 2)\$OP
opStruveL := operator('struveL, 2)\$OP
opHankelH1 := operator('hankelH1, 2)\$OP
opHankelH2 := operator('hankelH2, 2)\$OP
opLommelS1 := operator('lommelS1, 3)\$OP
opLommelS2 := operator('lommelS2, 3)\$OP
opKummerM := operator('kummerM, 3)\$OP
opKummerU := operator('kummerU, 3)\$OP
opLegendreP := operator('legendreP, 3)\$OP
opLegendreQ := operator('legendreQ, 3)\$OP
opKelvinBei := operator('kelvinBei, 2)\$OP
opKelvinBer := operator('kelvinBer, 2)\$OP
opKelvinKei := operator('kelvinKei, 2)\$OP
opKelvinKer := operator('kelvinKer, 2)\$OP
opEllipticK := operator('ellipticK, 1)\$OP
opEllipticE := operator('ellipticE, 1)\$OP
opEllipticE2 := operator('ellipticE2, 2)\$OP
opEllipticF := operator('ellipticF, 2)\$OP
opEllipticPi := operator('ellipticPi, 3)\$OP
opJacobiSn := operator('jacobiSn, 2)\$OP
opJacobiCn := operator('jacobiCn, 2)\$OP
opJacobiDn := operator('jacobiDn, 2)\$OP
opJacobiZeta := operator('jacobiZeta, 2)\$OP
opJacobiTheta := operator('jacobiTheta, 2)\$OP
opWeierstrassPInverse := operator('weierstrassPInverse, 3)\$OP
opLerchPhi := operator('lerchPhi, 3)\$OP
opRiemannZeta := operator('riemannZeta, 1)\$OP
-- orthogonal polynomials
opCharlierC := operator('charlierC, 3)\$OP
opHermiteH := operator('hermiteH, 2)\$OP
opJacobiP := operator('jacobiP, 4)\$OP
opLaguerreL := operator('laguerreL, 3)\$OP
opMeixnerM := operator('meixnerM, 4)\$OP
op_log_gamma := operator('%logGamma, 1)\$OP
op_eis := operator('%eis, 1)\$OP
op_erfs := operator('%erfs, 1)\$OP
op_erfis := operator('%erfis, 1)\$OP
opint   := operator('integral, 3)
-- arbitrary arity
opiint  := operator('%iint)\$BasicOperator
opdint  := operator('%defint, 5)
opfact  := operator('factorial, 1)
opperm  := operator('permutation, 2)
opbinom := operator('binomial, 2)
oppow   := operator(POWER, 2)
opsum   := operator('summation, 3)
opdsum  := operator('%defsum, 5)
opprod  := operator('product, 3)
opdprod := operator('%defprod, 5)
oprootsum := operator('%root_sum, 3)
opfloor := operator('floor, 1)
opceil := operator('ceil, 1)
opreal := operator('real, 1)
opimag := operator('imag, 1)
opconjugate := operator('conjugate, 1)
oparg := operator('arg, 1)
opsign := operator('sign, 1)
opDiracDelta := operator('diracDelta, 1)
-- arbitrary arity
opmax := operator('max)\$BasicOperator
opmin := operator('min)\$BasicOperator
algop   := [oproot, opalg]\$List(OP)
rtrigop := [opsin, opcos, optan, opcot, opsec, opcsc,
opasin, opacos, opatan, opacot, opasec, opacsc]
htrigop := [opsinh, opcosh, optanh, opcoth, opsech, opcsch,
opasinh, opacosh, opatanh, opacoth, opasech, opacsch]
trigop  := concat(rtrigop, htrigop)
elemop  := concat(trigop, [oppi, oplog, opexp])
primop  := [opei, opli, opsi, opci, opshi, opchi, operf, operfi, opli2,
opint, opdint, opfis, opfic, opiint]
combop  := [opfact, opperm, opbinom, oppow,
opsum, opdsum, opprod, opdprod]
specop  := [opGamma, opGamma2, opBeta, opdigamma, oppolygamma, opabs, _
opconjugate, opfloor, opceil, opreal, opimag, opsign, opmax, _
opmin,opDiracDelta, oparg, opconjugate, op_log_gamma, _
op_eis, op_erfs, op_erfis, _
opBesselJ, opBesselY, opBesselI, opBesselK, opAiryAi, opAiryBi, _
opAiryAiPrime, opAiryBiPrime, opLambertW, opPolylog, _
opWeierstrassP, opWeierstrassPPrime, opWeierstrassZeta, _
opWeierstrassSigma, opHypergeometricF, opMeijerG, _
opWhittakerM, _
opWhittakerW, _
opAngerJ, _
opWeberE, _
opStruveH, _
opStruveL, _
opHankelH1, _
opHankelH2, _
opLommelS1, _
opLommelS2, _
opKummerM, _
opKummerU, _
opLegendreP, _
opLegendreQ, _
opKelvinBei, _
opKelvinBer, _
opKelvinKei, _
opKelvinKer, _
opEllipticK, _
opEllipticE, _
opEllipticE2, _
opEllipticF, _
opEllipticPi, _
opJacobiSn, _
opJacobiCn, _
opJacobiDn, _
opJacobiZeta, _
opJacobiTheta, _
opLerchPhi, _
opRiemannZeta, _
opCharlierC, _
opHermiteH, _
opJacobiP, _
opLaguerreL, _
opMeixnerM _
]
-- opWeierstrassPInverse, _
anyop   := [oppren, opdiff, opbox, opquote]
allop   := concat(concat(concat(concat(concat(
algop, elemop), primop), combop), specop), anyop)
-- odd and even single argument operators, must be maintained current!
evenop := [opcos, opsec, opcosh, opsech, opabs, opDiracDelta]
oddop  := [opsin, opcsc, optan, opcot, opasin, opacsc, opatan,
opsinh, opcsch, optanh, opcoth, opasinh, opacsch, opatanh,
opacoth, opsi, opshi, operf, operfi, opsign, opreal, opimag]
-- operators whose second argument is a dummy variable
dummyvarop1 := [opdiff, opalg, opint, oprootsum, opsum, opprod]
-- operators whose second and third arguments are dummy variables
dummyvarop2 := [opdint, opdsum, opdprod]
operator s ==
if (deref brandNew?) then startUp false
for op in allop repeat
is?(op, s) => return copy op
operator(s)\$OP
dpi l    == '%pi::O
dfact x  == postfix("!"::Symbol::O, (ATOM(x)\$Lisp => x; paren x))
dquote l == prefix(quote(first(l)::O), rest l)
dgamma l == prefix('Gamma::O, l)
dEllipticE2(l : List O) : O == prefix('ellipticE::O, l)
setDummyVar(op, n) == setProperty(op, DUMMYVAR, n pretend None)
dexp x ==
e := '%e::O
x = 1::O => e
e ^ x
startUp b ==
brandNew?() := b
display(oppren, paren)
display(opbox, commaSeparate)
display(oppi, dpi)
display(opexp, dexp)
display(opGamma2, dgamma)
display(opEllipticE2, dEllipticE2)
display(opfact, dfact)
display(opquote, dquote)
display(opperm, (z1 : List O) : O +-> supersub('A::O, z1))
display(opbinom, (z1 : List O) : O +-> binomial(first z1, second z1))
display(oppow, (z1 : List O) : O +-> first(z1) ^ second(z1))
display(opsum, (z1 : List O) : O +-> sum(first z1, second z1, third z1))
display(opprod, (z1 : List O) : O +-> prod(first z1, second z1, third z1))
display(opint, (z1 : List O) : O +-> int(first z1 * hconcat('d::O, second z1),
empty(), third z1))
input(oppren, (z1 : List InputForm) : InputForm +-> convert concat(convert("("::Symbol)@InputForm,
concat(z1, convert(")"::Symbol)@InputForm)))
input(oppow, (z1 : List InputForm) : InputForm +-> convert concat(convert("^"::Symbol)@InputForm, z1))
input(oproot,
(z1 : List InputForm) : InputForm +-> convert [convert("^"::Symbol)@InputForm, first z1, 1 / second z1])
for op in algop   repeat assert(op, ALGOP)
for op in rtrigop repeat assert(op, 'rtrig)
for op in htrigop repeat assert(op, 'htrig)
for op in trigop  repeat assert(op, 'trig)
for op in elemop  repeat assert(op, 'elem)
for op in primop  repeat assert(op, 'prim)
for op in combop  repeat assert(op, 'comb)
for op in specop  repeat assert(op, 'special)
for op in anyop   repeat assert(op, 'any)
for op in evenop  repeat assert(op, EVEN)
for op in oddop   repeat assert(op, ODD)
for op in dummyvarop1 repeat setDummyVar(op, 1)
for op in dummyvarop2 repeat setDummyVar(op, 2)
assert(oppren, 'linear)
void
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-- SPAD files for the functional world should be compiled in the
-- following order:
--
--   OP  kl  expr function```
```   Compiling FriCAS source code from file
using old system compiler.
BOP abbreviates domain BasicOperator
------------------------------------------------------------------------
initializing NRLIB BOP for BasicOperator
compiling into NRLIB BOP
importing AssociationList(Symbol,None)
importing SingleInteger
importing NonNegativeInteger
importing Set Symbol
compiling exported is? : (\$,Symbol) -> Boolean
Time: 0.03 SEC.
compiling exported name : \$ -> Symbol
BOP;name;\$S;2 is replaced by QVELTop0
Time: 0 SEC.
compiling exported properties : \$ -> AssociationList(Symbol,None)
BOP;properties;\$Al;3 is replaced by QVELTop2
Time: 0 SEC.
compiling exported setProperties : (\$,AssociationList(Symbol,None)) -> \$
Time: 0 SEC.
compiling exported operator : Symbol -> \$
Time: 0.01 SEC.
compiling exported operator : (Symbol,NonNegativeInteger) -> \$
Time: 0 SEC.
compiling exported property : (\$,Symbol) -> Union(None,failed)
Time: 0 SEC.
compiling exported assert : (\$,Symbol) -> \$
Time: 0 SEC.
compiling exported has? : (\$,Symbol) -> Boolean
Time: 0 SEC.
compiling local oper : (Symbol,SingleInteger,AssociationList(Symbol,None)) -> \$
BOP;oper is replaced by VECTOR
Time: 0 SEC.
compiling exported weight : (\$,NonNegativeInteger) -> \$
Time: 0 SEC.
compiling exported nullary? : \$ -> Boolean
Time: 0 SEC.
compiling exported unary? : \$ -> Boolean
Time: 0 SEC.
compiling exported nary? : \$ -> Boolean
Time: 0 SEC.
compiling exported equality : (\$,(\$,\$) -> Boolean) -> \$
Time: 0 SEC.
compiling exported comparison : (\$,(\$,\$) -> Boolean) -> \$
Time: 0 SEC.
compiling exported display : (\$,OutputForm -> OutputForm) -> \$
Time: 0.01 SEC.
compiling exported deleteProperty! : (\$,Symbol) -> \$
Time: 0 SEC.
compiling exported setProperty : (\$,Symbol,None) -> \$
Time: 0.01 SEC.
compiling exported coerce : \$ -> OutputForm
Time: 0 SEC.
compiling exported input : (\$,List InputForm -> InputForm) -> \$
Time: 0 SEC.
compiling exported display : (\$,List OutputForm -> OutputForm) -> \$
Time: 0 SEC.
compiling local diffDisp : (\$,List OutputForm -> OutputForm) -> \$
Time: 0 SEC.
compiling exported display : \$ -> Union(List OutputForm -> OutputForm,failed)
Time: 0.01 SEC.
compiling exported input : \$ -> Union(List InputForm -> InputForm,failed)
Time: 0.01 SEC.
compiling exported arity : \$ -> Union(NonNegativeInteger,failed)
Time: 0 SEC.
compiling exported copy : \$ -> \$
Time: 0 SEC.
compiling exported conjugate : \$ -> \$
Time: 0.01 SEC.
compiling exported = : (\$,\$) -> Boolean
****** comp fails at level 13 with expression: ******
error in function =
(SEQ (|:=| (|:| #1=#:G671 (|Boolean|)) ((|Sel| |Lisp| EQ) |op1| |op2|))
(|exit| 1
(IF #1#
|true|
(SEQ
(|:=| (|:| #2=#:G672 (|Boolean|))
(~= (|name| |op1|) (|name| |op2|)))
(|exit| 1
(IF #2#
|false|
(SEQ
(|:=| (|:| #3=#:G673 (|Boolean|))
(~= (|op1| |narg|) (|op2| |narg|)))
(|exit| 1
(IF #3#
|false|
(SEQ
(|:=| (|:| #4=#:G674 (|Boolean|))
((|Sel| (|Set| (|Symbol|)) ~=) | << |
(|brace| (|keys| (|properties| |op1|))) | >> |
(|brace| (|keys| (|properties| |op2|)))))
(|exit| 1
(IF #4#
|false|
(SEQ (|:=| |func| (|property| |op1| EQUAL?))
(|exit| 1
(IF (|case| |func| (|None|))
((|pretend| (|::| |func| (|None|))
(|Mapping| (|Boolean|) \$ \$))
|op1| |op2|)
|true|)))))))))))))))
****** level 13  ******
\$x:= (brace (keys (properties op1)))
\$m:= \$EmptyMode
\$f:=
((((#:G674 #) (#:G673 # #) (#:G672 # #) (#:G671 # #) ...)
((|diffDisp| #) (|oper| #) (DIFFDISP #) (CONJ #) ...)))
>> Apparent user error:
NoValueMode
is an unknown mode```