login  home  contents  what's new  discussion  bug reports help  links  subscribe  changes  refresh  edit

# Edit detail for SandBoxReduce revision 22 of 36

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Editor: crashcut Time: 2008/01/31 02:40:56 GMT-8 Note:

added:

From crashcut Thu Jan 31 02:40:56 -0800 2008
From: crashcut
Date: Thu, 31 Jan 2008 02:40:56 -0800
Subject:
Message-ID: <20080131024056-0800@axiom-wiki.newsynthesis.org>

solve({y=-1/l*(1-(l*x+c1)^2)^(1/2)+c2, c1=((-3*l^2-l+8)^(1/2)/4-l, c2=-3((-3*l^2-l+8)^(1/2)+7*l)/12*l}, {y});



Try Reduce calculations here. For example:

  \begin{reduce}
solve({z=x*a+2},{z,x});
int(sqrt(1-sin(x)*cos(x)),x);
\end{reduce}


 solve({z=x*a+2},{z,x}); reduce
 int(sqrt(1-sin(x)*cos(x)),x); reduce

example from my daughter's college calc --pbwagner, Mon, 10 Sep 2007 12:58:25 -0500 reply
 int(log(log(x)),x); reduce

axiomintegrate(log(log(x)),x)
 (1)
Type: Union(Expression Integer,...)

 solve({c=-1/m*(1-(m*a+c1)^2)^(1/2)+c2, b=-1/m*(1-c1^2)^(1/2)+c2}, {c1,c2}); reduce

solve({y=-1/l(1-(lx+c1)^2)^(1/2)+c2, c1=((-3l^2-l+8)^(1/2)/4-l, c2=-3((-3l^2-l+8)^(1/2)+7l)/12l}, {y});