
Approaching Inheritance from a “Natural”
Mathematical Perspective and from a Java
Driven Viewpoint: a Comparative Review

Marc Conrad1, Tim French1, Carsten Maple1, and Sandra Pott2

1 University of Luton, LU1 3JU, UK
marc.conrad@luton.ac.uk, tim.french@luton.ac.uk,

carsten.maple@luton.ac.uk
2 University of York, YO10 5DD, UK

sp23@york.ac.uk

Abstract. It is well-known that few object-oriented programming lan-
guages allow objects to change their nature at run-time. There have
been a number of reasons presented for this, but it appears that their is
a real need for matters to change. In this paper we discuss the need for
object-oriented programming languages to reflect the dynamic nature of
problems, particularly those arising in a mathematical context. It is from
this context that we present a framework that realistically represents the
dynamic and evolving characteristic of problems and algorithms.

1 Introduction

It is acknowledged that there is widespread use of the Java and C++ languages
within undergraduate teaching of joint Honours degree programmes in Com-
puter Science and Mathematics in UK Universities. This can be confirmed by
conducting a review of materials available publically online. The results of such
a survey, which includes well-established institutions as well as those formed
more recently, are presented in Figure 1. The dominance of such languages is
hardly surprising, given the close conceptual cross-fertilization between object-
orientation and certain specific mathematical concepts such as abstraction, gen-
eralization, and overloading. Mathematicians are able through the use of Java or
C++ to contextualize mathematical abstractions in software. Equally, Computer
Scientists are able to explore fundamental mathematical constructs through an
easily accessible and natural medium of expression i.e. a simple Java program.
Indeed, for these and other related reasons, the graduates of such joint honours
degree programmes are much in demand from industry and commerce, where
object-oriented methods and tools now predominate. On the face of it therefore
we appear to have “a marriage made in heaven”.

However, some concerns remain – and in particular this paper highlights
how Java itself may be acting as a conceptual restraint for both mathematicians
and computer scientists alike in certain specific areas of mutual concern. For
example, it is well known that Java only supports a highly restrictive form

University Language

Aston Maple
Birmingham Undefined/Unclear
Bristol C++
Brunel Generic OO
Cambridge University Generic OO
Cardiff Java
Coventry Modula-2
Dundee Java
Edinburgh Java
Essex Java
Hertfordshire Undefined/Unclear
Imperial College Undefined/Unclear
Keele Undefined/Unclear
Kent Java
Kings College London Java
Kingston University Java
Lancaster Undefined/Unclear
Liverpool Java
Loughborough Undefined/Unclear
Manchester Java
Manchester Metropolitan Java
Oxford Brookes C++
Oxford University Generic OO
Queen Mary College, London Java
Queens University Belfast Modula-2
Sheffield Hallam C++
Strathclyde Undefined/Unclear
Surrey Undefined/Unclear
Swansea Undefined/Unclear
UCL Java
University of Central Lancashire Undefined/Unclear
University of Wales (Aberystwyth) Java
University of Wales (Bangor) Java
Westminster Generic OO
York Maple

Fig. 1. A snapshot survey of UCAS GG15 (BSc Joint Hons. in Mathematics and Com-
puter Science) Entry 2003–4. Programming languages taught during 1st year. Source:
published internet material in the public domain, August 2003.

of inheritance whereas mathematically other forms are commonly encountered
(such as dynamic inheritance and method renaming). The aim of this paper is
to examine these wider types of inheritance in some detail so as to encourage
mathematicians and computer scientists alike to move their thinking beyond the
limitations imposed by the standard Java programming environment itself (or
in fact any other tangible programming environment).

It is of course quite possible to incorporate additional features into Java
(or C++) through the use of various extensions such as the Darwin project
[11]. Equally it is possible to develop customized software implementations that
seek to explore mathematical structures in an overtly axiomatic manner such as
com.perisic.ring [6] or Axiom [10]. We will show that the close conceptual and ax-
iomatic links that exist between object orientation and mathematical structures
may merit a closer self-examination of the choice of programming environment
to be used in undergraduate Maths/Computer Science teaching. Whilst Java is
undeniably industrially credible and popular, it is nevertheless useful to examine
its limitations too. We go on to explore the limitations in respect of inheritance
and proceed to suggest ways in which these limitations may be overcome through
widening thinking processes, and/or by a process of extension through the cre-
ation of additions or tailored development environments.

2 The framework

In the context of Computer Algebra there are some packages that support the
object oriented paradigm. For example Axiom [10] has type hierarchies ordered in
an inheritance like structure and similarly Mupad [18] that explicitly enables the
defining of child classes of existing classes as groups, fields, etc. Even mainstream
mathematical software packages, such as Maple [24] and Mathematica [25], now
reflect the significance of Java as a programming language by offering an interface
between the package and Java applets and applications.

A radical approach to describing mathematical relationships within object
oriented software can be identified in the experimental Java package
com.perisic.ring [6]. It is focussed on an object oriented implementation of math-
ematical structures in an axiomatic manner. In the following we will take a
closer look at aspects of the design ideas of this package as they serve well as a
“reference model” for the discussion on non-standard inheritance relationships
presented in Section 3. For details we refer the reader to the web site and docu-
mentation of [6].

The main philosophy of the com.perisic.ring package is that postulated prop-
erties of a domain are reflected as abstract methods of Java classes. For example
an algebraic ring has by definition addition and multiplication. Of course, addi-
tion and multiplication are not known algorithmically for an arbitrary (unspec-
ified) ring: they cannot be implemented.

Therefore the mathematical entity “algebraic ring” is implemented as an
abstract class Ring with abstract methods as in

abstract public class Ring {
abstract public RingElement add(RingElement,RingElement);
abstract public RingElement mult(RingElement, RingElement);

...
}

Both methods have ”ring elements” as arguments and return values.
A RingElement is a class that can be (polymorphically) associated to any object
(e.g. a multi-precision integer, or a vector of RingElement objects).

Not all methods need to be abstract. For instance a method square can
be implemented via a2 = a · a using the abstract multiplication method. More
sophisticated non-abstract methods are exponentiation or evaluation of a poly-
nomial.

Thus, an abstract Java class is able to mimic the axiomatic definition of a
mathematical entity, here a “ring”. The axioms addition and multiplication ap-
pear as abstract methods in Ring while squaring is not axiomatic and therefore
may be implemented. Note that structural axioms such as associativity or dis-
tributivity cannot be declared as methods but rather have to be formulated as
constraints.

*

ZPolynomial Ring

coefficient ring

Ring Element Ring

java.lang.Object

Fig. 2. A UML diagram of the implementation of polynomials over Z following the
com.perisic.ring approach.

In Figure 2 we give an example illustrating the power of this concept by
showing how multivariate polynomials arise naturally by a straightforward im-
plementation of univariate polynomials.

The abstract class Ring bidirectionally links with many
RingElement objects as described above. The class Ring has two child classes,
namely the ring of integers Z and a univariate polynomial ring. Both of these
rings implement addition and multiplication. For Z this is possible via built-in
integer operations, whilst the polynomial ring implements addition and multipli-
cation via the addition and multiplication methods of the coefficient ring. That

is, the polynomial ring is not only derived from the class Ring but also uses
a Ring object in its role as a coefficient ring. Starting with an instantiation of
Z we can then recursively instantiate polynomial ring objects as Z[a], Z[a][b],
Z[a][b][x], and so forth.

In a similar way other structures can be implemented using the abstract class
Ring. For instance the com.perisic.ring package supports quotient rings, modular
rings, and universal rings. Obviously the design pattern can also be applied to
groups, vectors spaces, and metric spaces, for example.

3 Non-standard features

3.1 Dynamic Inheritance

Z/nZ

Ring

Z/nZField

Ring

prove n is prime

Field

Fig. 3. When n is proven to be prime the inheritance relationship changes.

When implementing the mathematical entities “field” and “ring” as classes,
it is straightforward to have them arranged in an inheritance relationship as
shown in Figure 3. A field is a ring with additional properties (such as division).
Some algorithms, for instance vector space computations, work only for fields
and not rings thereby justifying an extra class “field”, rather than introducing
“fieldness” as a property of ring.

For any given ring object however we do not always know a priori – that is at
compile time – if it is a field. For instance the ring Z/nZ in Figure 3 is a field if
and only n is a prime number. Although it has been recently shown that proof of

primality can be performed in polynomial time [2] it is not reasonable to assume
that the developer of the class hierarchy or a compiler can predict whether or
not a variable holds a prime number at a certain point of program execution
of an program (actually this is a special variant of the halting problem). The
most appropriate solution is to assume at the start of the program that Z/nZ
is a ring. When the primality of n has been proven the inheritance relationship
should change, so that the Z/nZ object, now an instance of a field, can for
example be used in the context of vector space computations.

Of course we freely acknowledge that Dynamic Inheritance is hardly a “new”
feature. A C++ implementation (or rather workaround) is already discussed in
[7]. Also strongly related is the concept of predicate classes [4] that is rooted
in Cecil [5] but in essence is language independent. In [14] a Java extension
featuring Dynamic Inheritance is proposed. Dynamic Inheritance is supported
in Lava as part of the Darwin project [11].

Although our focus is on mainstream languages such as Java, we briefly
discuss other concepts dealing with dynamic inheritance in order to get a better
idea how such features could be incorporated into Java, namely Self [22] and
Fickle [8].

Self [22] emphasizes an object driven approach rather than a class/instance
driven approach. New objects are generated by copying existing objects and
modifying them. This increases the flexibility of objects since they can act more
independently than in a more rigid class driven paradigm. One consequence
is that an object can flexibly add and remove parent objects any time during
program execution.

From a mathematical point of view it makes sense, in certain cases, for an
object to be able to change its ancestors. For instance it is well known that
the ring Z[i] is Euclidian, while most other quadratic orders Z[

√
d] are not.

Therefore, from an object-oriented point of view, the information Euclidian is
located in the ring object itself and not in the class. The Expert design pattern
[16] suggests that the object should be able to change its parent class (from Ring
to Euclidian Ring).

From the point of flexibility, languages such as Self are optimal and below
we further discuss how such flexibility can be transferred into a mainstream
language such as Java. Mathematical intuition, i.e. examining this issue from a
formal conceptual perspective, suggests that we should not give up on classes too
easily. In fact the ideal situation would be that Z[i] is a child object of a Euclidian
ring whilst still being of class quadratic order. For example, with reference to the
earlier example of modular integer rings, Z/13Z is and should remain of type
modular integer rings, i.e. an instance of a class Z/nZ, instantiated with n = 13.
After proof of primality, its parent class will be changed to Field, but it will not
cease to be a Modular Ring.

A possible compromise solution is to introduce a class Finite Prime Field that
is a child class of Modular Integer Ring which implements a Field interface (we
have to abandon the idea of an abstract class Field, as Java does not support
multiple inheritance). Then the task is “simply” to reclassify at runtime the

Z/13Z object from Modular Integer Ring to Finite Prime Field. Reclassification
is a concept both discussed and directly implemented in Fickle.

The general idea is this: An object is related to a Root Class (in this case the
class Ring). Then it can be reclassified to each child class (called State Classes)
of this Root class. A special operator !! in Fickle reclassifies an object from one
State Class to another when both belong to the same Root Class. Please see [8]
for further details.

The translation of Fickle into Java as described in [1] is conceptually interest-
ing. Here, each Fickle object is translated in Java to a pair < id, imp > where id
is the identity of an object and imp is the implementation of the object. Whilst
the identity remains unchanged for a particular object, the implementation has
the class information and can thus change. From this concept we can deduce the
feasibility of dynamic inheritance in Java. From a pragmatic viewpoint the re-
sulting Java code is complex, difficult to follow, and counterintuitive, to say the
least. For instance a method implying a possible change of class has to be trans-
lated into a pair (a static and a member method). Calls of member methods in
Fickle are translated into calls of static methods with an object as an argument
(this is quite similar to C workarounds for object oriented programming).

Nevertheless the Fickle idea can serve as a roadmap for an implementation of
reclassification in Java directly. An object that is to be reclassified is represented
as a pair of an identity and an object of the current class. That means, from a
user perspective that the only additions to the Java language are:

– a keyword, say dynamic, in connection with the new keyword, indicating that
a new object can be reclassified;

– a method reclassify indicating a reclassification.

Figure 4 shows a code example illustrating the proposed syntax of Java re-
classification.

The priorities for the Java Developer Team for J2SE 1.5 are not in dynamic
inheritance. However references to references that would allow an easier imple-
mentation of the Fickle concept seems at least to be recognized as a desired
feature (and is already partly available in the java.lang.ref package) [3].

3.2 Dynamic Generalization

Assume for the moment that Euclid were a contemporary mathematician who
had just discovered the Euclidian division (also known as division with remain-
der), and that he wants to add Euclidian division into existing mathematical
software that features a ring/field implementation as on the left hand side in
Figure 5. The proper place for a Euclidian Ring – a ring with Euclidian division
– is between the ring and field. Not every Ring is Euclidian and every field is
trivially a Euclidian ring [15].

As this fictional example shows mathematical progress and invention does not
only confine to deriving child classes from parent classes but also encompasses
the invention or discovering of properties that do not apply to all entities (here:

public class MatrixRing {

public Ring ringOfEntries;

public MatrixRing(Ring theRingOfEntries) {

ringOfEntries = theRingOfEntries;

}

public Solution [] solve(Equations [] eqs) {

if(ringOfEntries.getModule().isPrime()) {

// reclassify

ringOfEntries.reclassify(

Class.forName("com.perisic.FinitePrimeField"));

// Use a library method to make a standard Gauss elimination

Solution [] MatrixOverFieldUtilities.Gauss(eqs);

}

else {

// [...] do something more sophisticated, tailored for

// Z/nZ (e.g. applying the Chinese Remainder Theorem

// with componentwise solution).

}

}

public static void main (String [] args) {

// [...] enter module, we do not know if it is a prime

Ring ZModNZ = new dynamic ModularIntegerRing(module);

MatrixRing MR = new MatrixRing(ZModNZ);

Equations [] eqs = ... // generate a system of linear equations

Solution [] result = MR.solve(eqs);

// [...] print results

}

}

Fig. 4. Example of the proposed syntax of Java reclassification. For determing the solu-
tion space of a system of linear equations over a field a standard Gauss elimination over
fields can be used. We assume that this is provided by a class MatrixOverFieldUtili-
ties. We further assume suitable definitions of the classes Ring, ModularIntegerRing,
Equations and Solution. The keyword dynamic and the method reclassify are the
proposed extensions of the Java language.

Ring
Euclidian

Field

Ring

Field

Ring

New:
Euclidian
Algorithm

Fig. 5. The ”new” Euclidian ring has its place in the middle of the hierarchy

Rings) and may be trivial for (but apply to) a subset of these entities (here:
Fields). In object oriented terms that means that in mathematics it is natural
for new classes to appear as a generalization of an existing class, or even as both
a specialization and a generalization of existing classes. This process is known as
interclassing. For a motivation of interclassing from a software engineering point
of view see [9].

Although the imaginary scenario that Euclid invented Euclidian division af-
ter the invention of the concept of a ring and field may be somewhat artificial,
defining new structures in the context of an existing hierarchy is a standard tech-
nique in contemporary mathematics. A typical example taken from Functional
Analysis are the Triebel-Lizorkin spaces, which were introduced in the 1970’s
as simultaneous generalizations of a number of well-known classes of function
spaces, e.g. Lp spaces, Hardy spaces, the space of functions of bounded mean
oscillation (BMO), Lipschitz spaces and Sobolev spaces (see e.g. [23]). A Triebel-
Lizorkin space is a specialization of a Banach function space. A more recent
example are the so-called real Q-spaces, which are a simultaneous generalization
of the space BMO and certain other Banach function spaces [12].

This “interclassing” in Mathematics is often motivated by the desire to create
a unifying framework for several known classes of mathematical objects in a
certain context (as in the first of the two examples mentioned above), or to bring
existing mathematical techniques to new applications (in the second example).

Note that the problem of interclassing is substantially different from the
problem of run-time reclassification described earlier in section 3.1. Here, we
start with a class hierarchy that may be arranged in a package and that may not
even contain any source code. We want to extend this class hierarchy by adding
a class on a well defined position in an inheritance tree. Even if the source code
is available it may be not desirable to change this code, especially if the class
library is well established and the addition of the new class has experimental
character, or is only relevant for a specialized application area.

Outside of a mathematical context the idea of interclassing is already dis-
cussed in [21]. In [9] an implementation is described using the OFL model. How-
ever, in terms of pragmatic usage OFL is inadequate as it requires de facto to

learn OFL as an additional language, namely the understanding of the correct
use of hyper-generic parameters. Also, in using hyper-generic parameters the
developer of a library already unnecessarily restricts possible extensions.

For these and other reasons we propose here a mechanism for interclassing
at run-time an existing library that is conceptually simpler and is also proven
to be workable in practice in the application area of computer games [19]. In-
corporating this mechanism into Java requires the addition of three “easy” to
understand keywords and two methods.

We will illustrate this by extending the earlier Euclidian Ring example: Imag-
ine an inheritance hierarchy with a Ring as a parent class and two rings, say field
and polynomial ring over real numbers as child classes, and we further assume
that these classes are part of a library and cannot be changed simply by adding
source code. However we can assume that the developer of the class hierarchy
wants to allow interclassing, assuming that a mathematical developer knows that
new structures are likely to be added.

Adding a new class Euclidian Ring in this hierarchy will be between the Ring
class (as parent) and both the Field and Polynomial Ring (as child classes). Thus,
at least in principle, both Field and Polynomial Ring, obtain additional behav-
iors. The obvious problem is, how do the Field and Polynomial Ring “know”
about this additional features?. The solution is shadowing of objects and/or
classes. Shadowing of an object means that each message sent to this object
is “filtered” through a set of shadows. If the message is already understood in
the shadow, it is executed in the shadow. If the message is not understood, then
it is passed to the shadowed object. In addition, the shadow itself is able to send
a message directly to the shadowed object. Shadowing is a language feature of
LPC [19], a language designed for implementing MUDs (namely LPMuds). The
shadow mechanism for objects is documented in [20]. As LPC is classless (using
rather a prototype approach with cloneable objects as in Self), there is obviously
no mechanism for class shadowing.

For our proposed Java extension we assume that shadowing a class means
that a shadow is thrown (automatically) onto each object instantiated from this
class. Also, LPC does not allow to shadow an inheritance relationship. Again,
there is conceptionally no problem to allow this in our solution (compare e.g.
with Self [22] where each parent slot is in fact a special kind of a data slot).

To add this feature to Java we propose the following concepts: First, a key-
word shadowable gives a class the property that it can be shadowed. Internally
each shadowable class and object maintains a list of its shadows.

The keyword shadow declares a class to be used as a shadow, and especially
enables this class to use the keyword shadowOwner. The keyword shadowOwner
refers to the shadowed object (similarly the keywords this and super refer to
well defined, context-depended objects).

The member method shadowedBy(Object ob); actually shadows an ob-
ject, whereas the static method shadowedBy(Class c); shadows a class. Both
methods are available in any shadowable object/class (similar to clone() that
is available in each cloneable object).

Figure 6 and 7 illustrate the usage of these keywords. Note that this syn-
tax allows great flexibility whilst maintaining simplicity and usability of the
language.

package example;

public abstract class Ring {

// Ring methods here as in com.perisic.Ring

}

// shadowable new keyword allows shadowing

public abstract shadowable class Field extends Ring {

// Field specific methods here, e.g. inversion

}

// A polynomial ring of one variable over a real numbers.

public shadowable class PolynomialRingOverReals extends Ring {

// Polynomial ring arithmetic implemented here

}

Fig. 6. Declaration of a Ring/Field hierarchy using the new keyword shadowable

There seems to be no straightforward workaround for dynamic generalization
at run-time other than changing the source code and recompiling. The main
problem that any workaround faces is the inherent difficulty of informing an
object (in this case a Field) to accept a message (in this case Euclidian Division)
that hasn’t been originally defined in a member method.

3.3 Overriding with Renaming

A group is a set with an operation and certain properties (the existence and
uniqueness of a neutral element, associativity, etc). In general the operation is
denoted by the symbol ◦ as in c = a ◦ b. In a concrete situation there is often a
standard notation for the group operation. The most familiar are + for addition
in an additive group and ∗ or × for multiplication in a multiplicative group.

For instance Figure 8 shows the multiplicative group GL(2,Q) of invertible
2 × 2 matrices as a child class of an abstract group with an operation. The
natural way to implement the group operation includes renaming the operation
multiplication.

Renaming is hardly a new feature in object oriented contexts. In Eiffel renam-
ing is the preferred method of choice to avoid ambiguity in multiple inheritance
relationships [17]. Renaming exists also as standard feature in Python [13]. In
contrast to the problems discussed earlier in section 3.1 and 3.2 this is not a so-
phisticated problem from a software engineering point of view. However adding

public abstract class EuclidianRing extends Ring {

// Returns a pair (q,r) such as a * q + r = b.

abstract RingElt [] EuclidianDivision(RingElt a, RingElt b);

}

// The shadow for the field

public shadow FieldShadow extends EuclidianRing {

RingElt [] EuclidianDivision(RingElt a, RingElt b) {

RingElt [] result = new RingElt[2];

RingElt result[1] = shadowOwner.zero(); // r = 0

RingElt result[0] = shadowOwner.div(b,a) // q = b/a

return result;

}

// The shadow for the polynomial ring

public shadow PolynomialRingShadow extends EuclidianRing {

RingElt [] EuclidianDivision(RingElt a, RingElt b) {

// Code for Euclidian division here

}

public class TestStub {

public static void main (String [] args) {

// shadowing all objects instantiated from this class

example.Field.shadowedBy(Class.forName("FieldShadow"));

// shadowing one object only.

P = new PolynomialRingOverReals();

P.shadowedBy(new PolynomialRingShadow());

//

}

}

Fig. 7. An extension of the hierarchy of Figure 6 using an Euclidian Ring. The new
method here is Euclidian division and made available for child classes

GL(2,Q)

rename operation()

operation()

Group

as multiplication()

Fig. 8. GL(2,Q) overrides operation() and renames it as multiplication().

this concept to Java would be an easy step to improve usability of Java within
a mathematical context.

4 Conclusion

From the preceding discussion it is clear that a consideration of inheritance
purely from a Java implementation perspective is a potentially conceptually
self-limiting form of intellectual enquiry, though unquestionably highly prag-
matic and vocationally useful. It is of course possible that mainstream languages
will eventually evolve so as to directly support dynamic inheritance, generaliza-
tion, and renaming or otherwise provide more explicit support for more abstract
mathematical structures such as groups, rings, or vector spaces. However in the
short-term it is perhaps more realistic to envisage that those seeking to explore
the close conceptual cross-fertilization between pure mathematics and the object
oriented paradigm will seek to supplement the standard Java “diet” through the
creation of tailor made packages that adopt an overtly axiomatic vision. In any
event it is clear that by only considering the types of inheritance that a particular
programming language actually happens to support, students will fail to appre-
ciate the wider (conceptual) picture and indeed arguably fail to gain their full
maturity as mathematicians. Equally, those who consider their main interest to
be in software design and development may have much to gain intellectually by
expanding their knowledge of topics such as inheritance by exploring beyond the
features that happen to be supported by any particular programming language.

References

1. D. Acnona, C. Anderson, F. Damiani, S. Drossopoulou, P. Giannini, E. Zucca. A type
preserving translation of Fickle into Java Electronic Notes in Theoretical Computer
Science 62 (2001). Available at: http://www.elsevier.nl/locate/entcs/volume62.html

2. Maindra Agrawal, Neeraj Kayal, Nitin Saxena. PRIMES is in P,
http://www.cse.iitk.ac.in/news/primality.html, August 2002.

3. J. Bloch, N. Gafter, E. Ort (Moderator). New Java Language Fea-
tures in J2SE 1.5, JavaLive Transcript, July 2003. Available from:
http://developer.java.sun.com/developer/community/chat/JavaLive/2003/jl0729.html

4. C. Chambers. Predicate classes, in: Proceedings of the ECOOP’93, volume 707 of
Lecture Notes in Computer Science, pages 268–296, Kaiserslautern, Germany, July
1993.

5. C. Chambers. The Cecil Language: Specification & Rationale, avialable at:
http://www.cs.washington.edu/research/projects/cecil/www/pubs/cecil-
spec.html.

6. Marc Conrad. com.perisic.ring – A Java package for multivariate polynomials,
http://ring.perisic.com.

7. James Coplien. Advanced C++ programming styles and idioms, Addison-Wesley
1992.

8. S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini and P. Giannini. Fickle: Dy-
namic object re-classification, in: ECOOP’01, LNCS 2072 (2001), pp. 130–149.

9. Pierre Crescenzo, Philippe Lahire. Using Both Specialisation and Generalisation in
a Programming Language: Why and How? Advances in Object-Oriented Information
Sytems, OOIS 2002 Workshops, Montpellier, pages 64–73, September 2002.

10. Tim Daly et. al. Axiom Computer Algebra System,
http://savannah.nongnu.org/projects/axiom.

11. The Darwin Project, http://javalab.iai.uni-bonn.de/research/darwin.
12. M. Essén, S Janson, L. Peng and J. Xiao, Q-spaces of several real variables, Indiana

University Mathematics Journal, vol 49, no 2(2000), 575 – 615
13. Jeremy Hylton. Introduction to Object-Oriented Programming in Python (Outline),

http://www.python.org/̃jeremy/tutorial/outline.html, Januar 2000.
14. Günter Kniesel. Darwin & Lava - Object-based Dynamic Inheritance ... in Java,

Poster presentation at ECOOP 2002.
15. Serge Lang. Algebra, third ed., Addison-Wesley, 1993.
16. C. Larman. Applying UML and Patterns: An Introduction to Object-oriented Anal-

ysis and Design, Prentice Hall, 2001.
17. Betrand Meyer. Overloading vs. Object Methodology, Journal of Object-Oriented

Programming, October/November 2001.
18. The MuPAD Research Group. MuPAD – The Open Computer Algebra System,

http://www.mupad.de.
19. Lars Pensjö. LPC. Documentation available at:

http://www.lysator.liu.se/mud/lpc.html
20. Documentation of the Shadow function, in: http://www.lysator.liu.se/mud/MudOS-

doc/efuns/system/shadow.html
21. P. Rapicault, A. Napoli. Evolution d’une hirarchie de classes par interclassement.

In: LMO’2001, Hermes Sc. Pub. ”L’objet”, vol. 7 - no. 1–2/2001.
22. The Self Group. Self, http://research.sun.com/research/self
23. H. Triebel, Theory of Function Spaces, Monographs in Mathematics, vol 78,

Birkhäuser Verlag Basel, 1983
24. Waterloo Maple Inc. Maple http://www.maplesoft.com
25. Wolfram Research. Mathematica, http://www.wolfram.com.

