
Algorithms for Type Inference with Coercions

Andreas Weber*

Wilhelm-Schickard-Institut fur Informatik

Universitat Tubingen

72076 Tubingen, Germany

E-mail: weber@informatik .uni-tuebingen .de

Abstract

This paper presents algorithms that perform a type inference for a
type system occttrring inthecontext ofcomputer algebra. Thetype

system permits various classes of coercions between types and the

algorithms are complete for the precisely defined system, which can

be seen as a formal description of an important subset of the type

system supported by the computer algebra program AXIOM.
Previously only algorithms for much more restricted cases of

coercions have been described or the frameworks used have been so

general that the corresponding type inference problems were known

to be undecidable.

1 Introduction

TYpe systems are now widely recognized to be of central importance
for the design of a symbolic computation system (seee.g.[16], [2],

[3], [13], [17], [6], [21], [22] tomention only some of the more

recent papers on the topic). Especially thetype system of AXlOM

[7] is of growing influence (some recent systems whose type system

is strongly influenced by it are GAUSS [15] and W EYL [24]).
In order to make an AXIOM like type system feasible for a user

it is necessary that asystem performs anautomatic type inference

which resolves the overloading of the operators and automatically
inserts coercion functions between appropriate types.

Ideally a user should be able to write down an expression like

()10
t–

3;

which — as a mathematician would conclude —denotes a2 x 2-

matrix over Q[t] where the t in the expression is the usual shorthand
fort times the identity matrix. Then thesystem should perform
a type inference for the expression which resolves the overloaded

operators and automatically inserts coercion functions where nec-
essary.

In an AXIOM like type system, this expression involves the

following types andtype constructors: Theintegral domain Iofin-
tegers, the unary type constructor QF which forms the quotient field
of an integral domain, the binary type constructor UP which forms

*Supportedby the DeutscheForschungsgemeinschafi, grantLo 231/5-1.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication anditsdate appear, andnotice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
ISAAC 94- 7/94 Oxford England UK
(3 1994 ACM 0-89791 -638-7/94/0007..$3.50

the ring of univariate polynomials over some ring in a specified
indeterminate, and the type constructor Mz,2 building the 2 x 2-

matrices over a commutative ring.
In order to type this expression correctly several coercion func-

tions have to be used, cf. [22].

Some heuristics for type inference with coercions are imple-

mented in AXIOM [20, 4], but these heuristics do not correctly
handle such a complex example as the one given abovel and they

are “incomplete”, i.e. the system does not find all of the possible

coercions — if it finds any at all!

Some formal systems of coercions between types in a computer
algebra context are described in [17, 4, 2]. However, the systems
considered in these papers are either much more restrictive than

the one we will consider [17], or they are so general that the type
inference problem becomes undecidable [4, 2].

We will present some algorithms for type inference which are

complete for a class of coercions covering many cases of coercions
occurring in the context of computer algebra — e. g. they can handle

the example given above. The classes of coercions we consider are

semantically investigated in [22] which we refer to for more details

and examples. In [22] we have also shown that our system of

coercions is more extensive than the ones which were investigated

in the context of functional programming [8, 14,5, 10].
Although our system is more general in one respect than the one

given in [2] it is more restrictive in another one (cf. Sec. 4.2). Thus
the presented algorithms are also a solution for the open problem

stated in [2] namely finding restrictions on the coercions which

yield a decidable type inference problem.

2 Preliminaries

An order-sorted signature is a triple (S,<, Z), where S is a set of
sorts, < a partial order on S, and Z a family {L, u I w c ~, a c

S} of not necessarily disjoint sets of operator symbols.
For notational convenience, we will often write f : (w)a instead

of f E XU,O; (u)a is called an arity and ~ : (W)O a declaration.

The signature (S, <, Z) is often identified with X. If IWI = n then

f is called a n-ary operator symbol. O-ary operator symbols are
COnsttwttSyfflbds.

As in [19] we will assume in the following that for any f there
is only a single n c N such that f is a n-at-y operator symbol.

A o-sorted variable set is a family V = {Ve I u 6 S} of

disjoint, nonempty sets. For z G Va we also write x : c or xc.

1AXIOM aruibutes a type

Polynomial SquareMatrix (2, Fraction Integer)

to Uds expression instead of

SquareMatrix (2, Polynomial Fraction Integer).

As a consequence it cannot compute Its determinant!

324

The set of order-sorted terms of sort u freely generated by V,
Z“Z(V)C, is the least set satisfying

. if x G VO, and o’ < a, then z c Tx(V).

● iff~~w,a~,w=al ~”. an, a’ < a and ti c Tz(V)~, then
/(t,,. ,tn) GT..(v)o.

The set of all order-sorted terms over X freely generated by V
will be denoted by

23(V) := u T.(v)..
UES

The set of all ground terms over 2 is TX := Tz({}), If t c Tz(V)O

we will also write t : u.

A signature is regular, if each term t c Tx(V) has a least sort.

The complexity of a term t 6 Tx(V), corn(t) is inductively

defined as follows:

● corn(t) = 1, if te V& ort c Zc,a for some u E S,

● ifjc~w,al,~=ul.. an, and t,c T’(V)~, then

com(~(tl, . . . ,tn)) = max(com(tl),..., com(tn)) + 1.

3 The Language of Types

As in [22, 2], a type will just be an element of the set of all order-

sorted terms over a regular signature (S,<, Z) freely generated by

some family of infinite sets V = { VC I a C S}.

For more details and examples we refer to [22].
This formalism is well suited to express the subset of the type

system of AXIOM [7], in which only non-parameterized categories

are considered and the properties correspond to the non-paramete-
rized categories.

3.1 Coercions

The classes of coercions we will consider are generally the same
as in [22]. We thus refer to [22] for an investigation of semantic

properties of the system and for more examples.

We will write tl ~ tzif there is a coercion # : tl - tz.

3.2 General Conditions

If # : t1+ tzand@ : t2+ t3are coercion functions then the

composition ~ o # will be a coercion. Thus the relation generated

by Q will be transitive. It will be convenient to define that the
iden~h y on a type is a coercion.

3.2.1 Coercions between Base Types

We will assume that the coercions between base types are effectively
given, i.e. that we can decide for two base types t1and tzwhether
t]~ tzor not.

3.2.2 Structural Coercions

Definition 1. The n-ary type constructor (n ~ 1) ~ induces a struc-

tural coercion, if there are sets Af ~ {1,. . . . n} and M f ~
{1 ,. ... n} such that the following condition is satisfied:

Whenever there are declarations ~ : (at . . . ~~)a and ~ :
(u; . .~~)a’ and ground types tl : m,... ,tm : am and tj :

‘Categoryin the sense of the AXIOM language, not in tie sense of category theory!

4,...,tk : 4 Suchthattt = (ifi $ Af ~Mf and there
are coercions

I#r, : t,+ t:, ifi c Mf,

~; : t; + t~, ifi E Af,

IP, =idt, =idp, ifi $1Af UMf,
,

then there is a uniquely defined coercion

Ff(tl,tn.t;,....t~.du,dbl):bl):
f(tl,...,tnf(t;,; ,t:),t:).

The type constructor f is covariant in its i-th argument, if

i c Mf. It is contravariant in its i-th argument, if i c Af.

Instead of the adjective “covariant” we will sometimes use

the adjective “monotonic”, and instead of “contravariant” we will

sometimes use “antimonotonic”, because both terminologies are

used in the literature and reflect different intuitions which are use-

ful in different contexts.

We refer to [22] for examples of type constructors which induce

a structural coercion.

Although many important type constructors arising in computer
algebra are covariant in all arguments it is not justified to assume that
this property will always hold as was done in [2]. For instance the

type constructor for building “function spaces” is contravariant in its
first argument, cf. [22, 1]. Constructions like the fixpoint field of a

certain algebraic extension of Q under a group of automorphisms in

Galois theory — see e.g. [9] — would give other — more algebraic

examples — of type constructors which are contravariant.3
Some examples of type constructors which are neither mono-

tonic nor antimonotonic are given e. g. in [8] or in [23].

3.2.3 Direct Embedding

Definition 2. Let f : (al . . . u~)a be a n-ary type constructor. If

for all ground types tl:UI,....tn:U* there is a coercion function

tq,tl,...,tm:ti+ f(tl, . . . ,t~), then we say that f has a direct
embedding at its i-th position.

Moreover, let

Df = {i I f has a direct embedding at its i-th position}

be the set of direct embedding positions of f.

Examples of type constructors having direct embedding can be

found in [22].

Remark. The definition for direct embedding given above is
slightly more restrictive than the one given in [22] by requiring

an appropriate coercion for all possible ground types into the pa-
rametrized type and not only for some ground types. However,
this additional requirement — which is in general necessary for

an algorithmic type inference — is reasonable for all examples we
know.

4 Algorithms for Type Inference with Coercions

In the following section we will restrict the types to the ones which

can be expressed as terms of a finite order-sorted signature. As is

shown in [23] we can also assume that the signature is regular.
Let op be a n-ary operation. We will assume that op is given a

profile of the form

Op: (lx... x t. - ‘$.+1?

31n the group theory program GAP [18] such constructs arc implemented as func-

tions and not as type consauctors. For a discussion of this point we refer to [23,

Chap.3.6.1].

325

s t CSGT(t).

[Sorts of types a type t is coercible to. S is the set of sorts of types in which t can be coerced to. Assumes that the signature is finite,
only direct embeddhrgs and structural coercions are present.]

(1) [t base type.] if corn(t) = O then{ S + CSBT(t); return}.

(2) [Recurse.] Lett = g(tl,... ,t~); fori = 1,... ,mdo St +- CSGT(t,); for (al,... ,o~)=Sl x.x S~do{if thereis

g:(ul. .um)~sucht hat~@S then {T+TU{g(~.1,...,~m~)};S +SU{~}; S’*S; T’ ‘r}}

(3) [Compute Direct Embedding.] for ~ E ‘T do { if there are F, f : (ml. .m~)u’, ic{l,. ... n}suchthat~ :Fandmi=i7 and

i~Dfand a’$f Sthen {S’ +- S’U{a’}; !T’+7’u{f(V&, ,.. .)%)} }}.

(4) [Iterate if something is added.] if S’ # S then { S t S’; T - T’; goto (3) }.

where

S - CSBT(t).

[Sorts of types a base type t is coercible to. IS is the set of sorts of types in which t can be coerced to. Assumes that the signature is

finite, only direct embedding and structural coercions are present.]

(1) [Initialize.] T + {t’ItSIt’and t’ is a base type}; S - {o’ I t : c’}; S’ +-S; T’ +- ‘T.

(2) [Compute Direct Embedding,] for; c T do { if there are ?7, j : (o1 . ~. u~)cr’, i c {1,..., n} such that;: F and a, = F and

iG7Jfand o’@Sthen {S’ +-- S’U{d}; T’+- T’U{f(VO, ,.. .,%,) }}}.

(3) [Iterate if something is added.] if S’ # S then{ S + S’; T + T’; goto (2) }.

Figure 1: Algorithms computing sorts of types a given type can be coerced to

where f,, 1 <-i < n + 1, is either a type variable v.,, 1 < k, or

a ground type t~. Given objects 01, ..., on having types t1,...,tn
respectively, the expression

Op(ol, . , , ,On)

will be well typed having type (~+ 1 iff the following condhions are
satisfied.

1. If ~ = ~, for some ground type ~, then t,~ ii,

2. If [i = (~ = W.l for some i # j then there is a type t : T~

such that tiSItand tj~ t.

3.If (i = v~~ then there is a type t:Tksuch that ti ~ t.

Notice that if we require that all objects have ground types —
if they have a type at all — then algorithms solving the problems
imposed by the above conditions can be used to solve the type

inference problem using a bottom-up process.4
If we do not restrict the possible coercions then determining

whether for given types t1and tzthere is a type tsuch that t1~ t
and tzSItmight be an undecidable problem, cf. [2].

In the following we will restrict the possible coercions to coer-
cions between base types,s direct embedding and structural coer-
cions.

4Similar ideascanbe found in [2, Sec. 4] and in [16].

f By the assumption of a finite signatore there are only finitely many base types

and we will assume that tbe finitely many ccercions between base types am effectively

given.

4.1 Computing Properties of Coercible-to Types

Proposition 3. Assume that the types are terms of a jinite, regular

order-sorted signature and that there are only coercions between

base types, direct embedding and structural coercions. Then for

any type t, the set

St={u\3t’ .t’:aandt~ t’}

is effectively computable.

Proof We claim that the set St will be computed by the algorithm

CSGT(t) (seeFig. 1).

All computations which are used in CSGT and CSBT can be
performed effectively. Since the signature is finite there are always

only finitely many possibilities which have to be checked in the
existential clauses of the algorithms and so algorithm CSBT will

terminate and so will CSGT. Algorithm CSGT is correct (i.e.

CSGT(t) g St), because only types and the sort of types tcan be
coerced to are computed. Its completeness (i.e. CS GT(t) ~ St)

follows from the fact that structural coercions cannot add new sorts
to St, c1

4.2 Common Upper Bounds

In the following we will rule out antimonotonic structural coercions,

i.e. we will require that Af = @for all type constructors j.

Notice that the restriction Af = O does not exclude type con-
structors like the constructor FS building the space of functions

from the frameworks Only the automatic insertion of a coercion

6See [2’2] for a discussion of theproperdes of FS With respect to coermons.

326

u + csMuBGT(tl, t2)

[L/ is a complete set of minimal upper bounds of two types tl and tz.Requires that only direct embedding and structural coercions

are used, lDf I < 1 and Af = 0 for any type constructor f. Assumes that algorithm CSMUBBT returns a finite set.]

(1) [tl and t,base types,] if com(tl) = 1 and com(tz) = 1 then { U - CSMUBBT(tl, t,); return}.

(2) [Ensure that com(tl) < com(tz).] if com(tl) > com(tz) then { h t tl; tl+ tz;tz+ h }.

(3)[tIa base type.] if com(tl) = 1 then { let t2= f(tj,.. ,t~);if I?lf[= O then { U + 0; return}; let ‘Df = {z};

u’ + CSMUBGT(tI, tj);

(3.1) ifU’ = L!then{ U + 0; return};

(3.2) ifU’ #Othen {ifi G Mf then {U+ @;fort’ ●U’do U+ UU{f(t~,... ,tl, t,,t~+*,*, t~)}t~)} }; ifi ~&tf

then { if t:c U’ then U + {tz} else U + 0} return } }.

(4) [General case.] lettl = g(t~,. . . ,t~); lett2 = ~(t~,. . . ,tf); U + 0.

(5) [Structural coercions.] if f = g then { for i c Mf do Ui + CSMUBGT(tj, tj); let Mf = {jl, . . . ,j/}; if tf = tf

for all k C {1 ,..., nMfthen{f or(t~l,l, t~l)CU,, xU,, x xUj, do{ fork E{l,..., n& ffdotj+t~;~;

U+uu{f(t; , . ..!4)} }}}.

(6) [Direct embedding in g.] if ID, I = 1 then{ let D, = {i}; U’ + CSMUBGT(t~, t2); if U’ # 0 then{ if i E M, then{

fort’ EU’do U+ UU{g(t~,..., tl, t,,t~+l,l,..., t~)} };ifi@Mgandtj ~U’then UtUU{tl} } }.

(7) [Direct embedding in f.] if lDfl = 1 then{ let Vf = {i}; U’ + CSMUBGT(tl, t;);if U’ # 0 then{ if i E Mf then {

fort’ ~U’do U+ UU{f(t~,t.t’, t~+t,+’, . . . ,t~)}}; ifi@Mfand t~CU’then U- Uu{t2} }}.

Figure 2: An algorithm computing a complete set of minimal upper bounds

giving rise to the antimonotony is excluded. For instance, instead
of having FS as a type constructor which is antimonotonic in its
first argument and monotonic in its second, it is one which is only

monotonic in its second argument. Such a restriction does not seem
to cause a loss of too much expressiveness. This is an important

difference to the system in [2], in which all type constructors have

to be monotonic in all arguments. ~pe constructors which are

antimonotonic in some argument have to be excluded from that

system in general, because it is not possible that a type constructor

being antimonotonic in some argument can be made monotonic in

that argument without changing the intended meaning of the type

constructor. Thus our framework is more general in this respect
than the one in [2]. However, direct embedding area special form
of the “rewrite relations” for coercion considered in that paper.

So the following can be seen as a solution of one of the open
problems stated in [2], namely finding restrictions on the system of

coercions which will yield a decidable type inference problem.

Definition. If for two types t1and tzthere is a type t such that
t,: tand t2~ tthen t is called a common upper bound of t1and

t2.
A minimal upper bound mub(t 1,tz)of two types tIand t2is a

type tsatisfying the following conditions.

1. The type tis a common upper bound of t1and ih.

2. If t’ is a type which is a common upper bound oft 1and t2
such that t’Q t,then tQ t’.

A complete set of minimal upper bounds for two types t1and t2is
a set CSMUB(t 1, t2.) such that

1. all tE CSMUB(t 1,tz)area minimal common upper bound
oft iand tz,and

2. for every type t’which is a common upper bound oft 1and
tzthere is a tc CSMUB(t 1,t2)such that t~ t’.

If two types t1and tzhave no minimal upper bound then the
complete sets of minimal upper bounds are all empty. In this case

we will write CSMUB(tl, tz) = 0. We will write I CSMUB(tl, t2)[
to denote the smallest cardinality of a complete set of minimal upper

bounds oft 1and t2.
If the partial order induced by the relation ~ is a quasi-lattice

then I CSMUB(t 1,t2)I<1 for all types t1and tz.However, in [23,

Chap. 4.5] it is shown that this partial order will not be a quasi-lattice
in general.

In the following we will assume that for any two base types

t; and t!a jinite complete set of minimal up er bounds can be
!computed effectively, say by CS M U B BT(t~, t2). We will give an

algorithm computing for any two types t1and tza complete set of
minimal upper bounds and will show that this set is finite.

Theorem 5. Assume that all coercions are coercions between base

types, direct embedding and structural coercions. lloreove~ as-

sume that for all type constructors f there is at most one direct

embedding position, i. e. IDf I < 1, and no antimonotonic coer-

cions are present, i. e. Af = 0, and for any base types t; and t;
there is a finite complete set of minimal upper bounds with respect

to the set of base types which can be effectively computed by a
function CSMUBBT(t~, t!).

Then for any two types t 1and t2 there is a finite complete set of
minimal upper bounds which can be effectively computed.

Prooj we claim that algorithm CS M U BGT (see Fig. 2) terminates
for any input parameters t1and tzand computes a complete set of
minimal upper bounds which is finite.

327

This claim can be proved by induction on the complexity of tl

and tzalong the steps of the algorithm. For the details of the proof
we refer to [23, Chap. 4.7.1]. ❑

Remark. Since algorithm CS M U B GT uses the type constructors

given by its arguments and does not have to perform a search

on all type constructors, it is not necessary that the signature is
finite. It is only necessary that there is an effective algorithm which

computes for any type constructor f the sets Df and M f, and that

the conditions imposed on algorithm CS M U B BT are fulfilled:

An example of an infinite signature with such properties is

a finite signature extended with a type constructor M~,~ for any
rn, n c IN with the intended meaning of building them x n-matrices

over commutative rings. It is natural to define ML,n = {1} for

allrn, n GDIandtohave~M~,m = @forrn#nand DMmn = {1}

for any n G lN.

4.3 Solving the Type Inference Problem

Combining algorithms CSGT (see Fig. 1) and CSMUBGT (see
Fig. 2) we can solve the subproblems 1–3 stated at the beginning of

Sec. 4.

So if the conditions stated in Prop. 3 and Theorem 5 on the

coercions are fulfilled and all O-ary operations of the object lang
— i.e. the simple objects — have ground types then it is possible

to decide for any expression if it is typeable with a ground type.

Moreover, in the positive case it is possible to compute a finite

complete set of minimal types for the expression.

4.4 Some remarks on the practical and theoretical com-
plexity of the algorithms

The presented algorithms seem to be well suited for a practical

implementation.

An inspection of the examples provided by AXIOM suggests
that the iteration step (4) in algorithm CSGT (see Fig. 1) is seldom
needed, which favorably affects the running time of the algorithm.

It is possible to construct examples of type constructors hav-

ing structural coercions and direct embedding at certain positions
so that the cardinality of a complete set of minimal upper bounds

of two types tland tz is exponential in min(com(tl), com(rh)).s

Thus the space complexity of algorithm CSMUBGT (see Fig. 2)

can be exponential. However, such examples seem to be of little

practical significance. Moreover, in a large practical system such

as AXIOM there are usually many type constructors but neverthe-
less the complexityl” of the occurring types is usually quite small.

Since the number of occurring type constructors does not affect the
running time of the presented algorithms 1 it seems to be possible

to use these algorithms for type inference in a large system.
The possibility to extend the algorithms to handle infinite fam-

ilies of type constructors — as we have shown above — seems to

be quite important with respect to their use in a practical system.

Acknowledgements. The present paper is part of the author’s

PhD-thesis [23] written under the supervision of Prof. R. Loos at
the University of Titbingen. I would like to thank Prof. Loos for
initiating and supervising my research.

I am grateful to the anonymous referees for their suggestions
which helped to clarify the presentation and to M. Ehrengard for

checking the style of the manuscript.

‘If thesignatareN finite, theseconditions witl always be falfilled if the coercions

between the base types am effectively given.

‘The key step for such a conshuction can b found in [23, Chap. 4S].

9Here we use the tetnr complexitywith its complexity theoretic content.

lORecaU Sec. 2 for the detirdton of complexity @a TPe.
11using a sui~ble repese~tationfor type COnStNWOrs tbe access OperatiOns cOm-

puting M ~ aad ‘Df for a given type consmactor f take constaat time.

Currently the presented algorithms are being implemented as

parl of the system for recognition of handwritten formulas [11]
which is supported by the Deutsche Forschungsgemeinscha ft.

References

[1]

[2]

[3]

[4]

uage

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

CARDELLI, L. A semantics of multiple inheritance. Informa-

don and Computation 76 (1988), 138–164.

COMON, H,, LUGIEZ, D., AND SCHNOEBELEN, P. A rewrite-
based type discipline for a subset of computer algebra. Journal

of Symbolic Computation 11 (1991), 349–368.

DALMAS, S. A polymorphic functional language applied to

symbolic computation. In Proc. Symposium on Symbolic

and Algebraic Computation (lSSAC ’92) (Berkeley, CA, July
1992), P.S. Wang, Ed., Association for Computing Machinery,

pp. 369-375.

FORTENBACHER, A. Efficient type inference and coercion in

computer algebra. ln Design and Implementation of Symbolic

Computation Systems (DISCO ’90) (Capri, Italy, Apr. 1990),

A. Miola, Ed., vol. 429 of Lecture Notes in Computer Science,

Springer-Verlag, pp. 56-60.

RJH, Y.-C., AND MISHRA, P. ~pe inference with subtypes.
Theoretical Computer Science 73 (1990), 155-175.

HEARN, A. C., AND SCHRUFER, E. An order-sorted approach
to algebraic computation. In Miola [12], pp. 134-144.

JENKS, R. D., AND SUTOR, R. S. AXIOM: The Scienti$c
Computation System. Springer-Verlag, New York, 1992.

KAES, S. ~pe inference in the presence of overloading, sub-

typing, and recursive types. In Proceedings of the 1992 ACM

Conference on Lisp and Functional Programming (San Fran-

cisco, CA, June 1992), Association for Computing Machinery,
pp. 193-205.

LANG, S. Algebra. Addison-Wesley, Reading, MA, 1971.

LINCOLN, P., AND MITCHEL, J. C. Algorithmic aspects of type
inference with subtypes. In Conference Record of the Nine-

teenth Annual ACM Symposium on Principles of Program-

ming Languages (Albuquerque, New Mexico, Jan, 1992), As-
sociation for Computing Machinery, pp. 293–304.

MARZINKEVVTTSCH, R. Operating computer algebra systems

by handprinted input. In Proc. Symposium on Symbolic and

Algebraic Computation (ISSAC ’91) (Bonn, Germany, July
1991), S. M. Watt, Ed,, Association for Computing Machinery,
pp. 411413.

MIOLA, A., Ed. Design and Implementation of Symbolic
Computation Systems — International Symposium DISCO ’93
(Gmunden, Austria, Sept. 1993), vol. 722 of Lzcture Notes in

Computer Science, Springer-Verlag,

IVIISSURA, S. A. Extending AlgBench with a type system. In

Miola [12], pp. 359-363.

MITCHELL, J. C. Type inference with simple subtypes. Journal

of Functional Programming 1, 3 (July 1991), 245-285.

MONAGAN, M. B. Gauss: a parameterized domain of compu-
tation system with support for signature functions. In Miola

[12], pp. 81-94.

328

[16] RECTOR, D. L. Semantics in algebraic computation. In Com-

puters and hlathematics (Massachusetts Institute of Technol-

ogy, June 1989), E. Kaltofen and S, M. Watt, Eds., Springer-
Verlag, pp. 299-307.

[17] SAN’TAS, P. S, A type system for computer algebra. In Miola
[12], pp. 177-191.

[18] SCH6NERT, M., BESCHE, H. U., BREUER, T,, CELLER, F.,
MNICH, J., PFEIFFER, G., POLIS, U., AND NIEMEYER, A.

GAP — Groups Algorithm, and Programming. Lehrstuhl D
fiir Mathematik, RWTH Aachen, Apr. 1992. Available via

anonymous ftp at samson. math. rwth-aachen. de in

pub/gap.

[19] SMOLKA, G., Nu’rr, W., GOCXJEN, J. A., AND MESEGUER,

J, Order-sorted equational computation. In Resolution of
Equations in Algebraic Structures, Volume 2, H. Ait-Kaci and
M. Nivat, Eds. Academic Press, 1989, chapter 10, pp. 297-

367.

[20] SUTOR, R. S., AND JENKS, R. D. The type inference and coer-

cion facilities in the Scratchpad II interpreter. ACM SIGPL4N

Notices 22, 7 (1987), 56-63. SIGPLAN ’87 Symposium on
Interpreters and Interpretive Techniques.

[21] WEBER, A. A type-coercion problem in computer algebra.

In Artifical Intelligence and Symbolic Mathematical Com-

putation — International Conference AISMC-I (Karlsruhe,
Germany, Aug. 1992), J. Calmet and J. A. Campbell, Eds.,
vol. 737 of Lecture Notes in Computer Science, Springer-

Verlag, pp. 188-194.

[22] WEBER, A. On coherence in computer algebra. In Miola [12],

pp. 95-106.

[23] WEBER, A. Type Systems for Computer Algebra. Dissertation,

Fakultiit fttr Informatik, Universittit Tttbingen, July 1993,

[24] ZIPPEL, R. The Weyl computer algebra substrate. In Miola

[12], pp. 303-318.

329

