
Lightweight Formal Methods For Computer Algebra Systems

Martin Dunstan Tom Kelsey Steve Linton Ursula Martin

Division of Computer Science

University of St Andrews

North Haugh, St Andrews, UK

fmnd, tom, sal, umg@dcs.st-and.ac.uk
http://www-theory.dcs.st-and.ac.uk

Abstract

In this paper we demonstrate the use of formal methods
tools to provide a semantics for the type hierarchy of the
AXIOM computer algebra system, and a methodology for
Aldor program analysis and veri�cation. We give examples
of abstract speci�cations of AXIOM primitives, and provide
an interface between these abstractions and Aldor code.

1 Introduction

We describe work in progress at St Andrews to apply formal
methods and machine assisted theorem proving techniques
to improve the robustness and reliability of computer alge-
bra systems. This project considers the use of the Larch [7]
approach to formal methods through speci�cations and uses
AXIOM [8] for the computer algebra system. We do not
exclude other formal methods systems such as VDM [9] or
Z [13] nor do we exclude applications to other computer alge-
bra systems (CAS) such as Mathematica [17] or Maple [14].
Indeed the weaker type systems used by the latter packages
may bene�t more from our approach than AXIOM can.

In the remainder of this introduction we motivate the
project, provide an overview of the structure of AXIOM
and its extension language, Aldor, describe our approach to
formal methods to CAS, introduce the formal methods tools
we have used, and provide a methodology for applying the
tools to a computer algebra environment. The second sec-
tion consists of an overview of our abstract speci�cations,
together with worked examples from the AXIOM algebra
type-hierarchy. This is followed by a section describing the
use of Larch/Aldor speci�cations (which provide an inter-
face between the abstractions of Section 2 and Aldor) and
the use of forwards program analysis for the generation of
veri�cation conditions. The �nal section is a brief statement
of conclusions formed and issues arising.

1.1 Motivation

CAS are large and complicated software packages. It is not
necessary for users to understand the whole system, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and
that copies bear this notice and the full citation on the �rst page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior speci�c permission and/or a fee. ISSAC'98,
Rostock, Germany. c 1998 ACM 1-58113-002-3/ 98/ 0008 $5.00

developers may be unsure as to whether to trust an ex-
isting procedure in a new context or produce a new im-
plementation from scratch. Moreover, while computer al-
gebra algorithms are generally sound, there can be hidden
dependencies and implicit side conditions present which can
lead to erroneous or misinterpreted results. Examples in-
clude inconsistent choice of branch cuts in integration algo-
rithms [4], invalid assumptions for the types of arguments
of a function or poorly documented side-conditions. An ex-
ample of incorrect typing is the AXIOM `SingleInteger'
type. This type represents �nite (machine) precision in-
tegers which wrap around at a machine dependent value.
However, `SingleInteger' has type `EntireRing' and hence
has no non-zero zero divisors. This is incorrect since
`(2**16:SINT)**2 = 0' in AXIOM on a 32 bit machine.
However, the implemented version is more useful for most
practical purposes.

1.2 AXIOM and Aldor

AXIOM [8] (originally ScratchPad 2 from IBM [3]) is a
strongly typed CAS with a two-level object model: every
value has a type which is used to prevent values being used
in inappropriate situations. Computation is carried out at
the AXIOM domain level: domains provide an environment
in which several functions can act on elements of the same
type. The type of a domain is an AXIOM category. For ex-
ample the functor `Matrix' takes a domain of type `Ring' and
returns a domain of type `MatrixCategory'. `Ring' provides
algebraic operations for matrix elements, `MatrixCategory'
provides linear algebra operations for matrices. A category
de�nes the typing restrictions of functions in a domain en-
vironment. Categories can be created by Aldor users and
developers, but the inbuilt hierarchies of algebraic and data
structure categories are su�cient for most purposes.

Like other CAS, AXIOM can be used interactively via an
interpreted language but there is also a compilable extension
called Aldor (formerly known as Axiom-XL [16] andA] [15]).
Aldor is a strongly-typed, imperative language with a num-
ber of features more commonly found in the functional pro-
gramming world such as higher-order functions. As in AX-
IOM itself, Aldor has a two-level object model with inheri-
tance which gives it the exibility and power necessary for
implementing and organising computer algebra routines. It
should be noted that the two-level object model is unusual
in both CAS and general purpose programming languages.

The top level of the object model is the category which
can be regarded as the de�ning a fragment of an abstract

80

data-type (ADT) interface. The implementation of an ADT
forms the bottom level of the model and is called a domain;
the interface of a domain can be constructed by referring
to di�erent categories. For example `MatrixCategory' de-
�nes row and column structures in terms of the category
`FiniteLinearAggregate' contained in the AXIOM data
structure hierarchy.

In addition to providing information about the exported
values of a domain, an Aldor category allows domain-
manipulating routines to provide restrictions the kinds of
domains they will accept and make promises about the type
of domain it will return.

Types and functions can be used as (constant) values in
expressions to provide parametric polymorphism and curry-
ing while generators (sometimes known as co-routines) give
the programmer an e�cient and generic method of iterating
over members of aggregate data types. The language also
provides post facto extensions which allow the behaviour of
existing types and functions to be extended.

The current Aldor compiler is able to produce libraries
for AXIOM as well as LISP, C and stand-alone executables
for the native platform of the user. Thus Aldor can be used
as a general purpose programming language in addition to
implementing computer algebra algorithms.

1.3 Formal Methods and CAS

There are a number of ways that CAS and theorem provers
can be linked together; the approach with which we are con-
cerned in this paper is the use of formal methods for soft-
ware development to improve the robustness and reliability
of computer algebra systems. More speci�cally we are inves-
tigating how the Larch [7] approach to formal speci�cation
and program design applies to a CAS such as AXIOM.

During software development there are a number places
where errors can be introduced. These can be broadly cat-
egorised as the design, implementation and maintenance
phases. Since many computer algebra routines have been
studied and reviewed over many years we can be con�dent
that they have been well designed and that the majority
work as their authors intended them to. However, we be-
lieve that it is more likely that errors will occur through
the inappropriate use of these routines, either by invoking
them with invalid arguments or applying them in the wrong
situations.

In this paper we suggest that developers should consider
speci�cation and formal methods during software develop-
ment. The much-cited advantages include improving un-
derstanding of the problem during the design phase, fewer
design errors since each stage must have a mathematical
justi�cation and fewer bugs in the �nal implementation. In
addition, machine checking and proof assistants can help
provide proofs of these justi�cations, as well as helping the
speci�er check that the speci�cations have their intended
properties. A program which satis�es a faulty speci�cation
is no safer than one which fails to satisfy a correct one.

Having obtained an implementation there is still a chance
that there will be bugs in it. These range from simple typ-
ing mistakes through to errors in the program logic: the
design process may have produced a speci�cation which is
easily implementable but this does not stop the programmer
making mistakes!

To help with these kinds of problems the programmer
will often turn to mechanical program checkers such as the
popular lint program for C. This program is able to analyse

sections of source code and identify some mistakes which
may be easily missed by the programmer. There is a limit
to how much work these analysers can perform since they
do not take into account the objectives of the program. By
allowing the static analyser to access the speci�cations of the
program it may be able to detect more classes of mistakes [5];
the eventual goal is to show that the program completely
satis�es the speci�cation.

Strongly typed systems such as AXIOM avoid many of
these problems since the type checking of the interpreter or
the compiler can enforce restrictions on argument types (e.g.
an implementation of the factorial function over the non-
negative integers can be de�ned to only accept values of this
type: weaker systems must use an integer type and perform
runtime argument checking). However, a strong type system
does not eliminate this problem since it may be impractical
to be overly strict in the choice of types: having oating
point types FloatRoundToInfinity, FloatRoundToZero etc.
to express di�erent systems of rounding modes is excessive
and severely complicates a given implementation.

The solution we advocate is to clearly specify the intent
of a given function or subroutine in a machine checkable
format and use appropriate formal methods tools to high-
light possible violations. Such violations may indicate the
presence of bugs which can be removed before they become
expensive to eliminate. The speci�cations will also help de-
velopers by providing clear, concise and (hopefully) unam-
biguous documentation.

1.4 Larch

When choosing a speci�cation language one must decide
what level of abstraction is required. If the speci�cation
language allows only abstract (programming language inde-
pendent) speci�cations then it may be di�cult or even im-
possible to obtain an implementation from them. Alterna-
tively a speci�cation language which is able to cope with the
features of di�erent implementation languages, such as in-
heritance, pointers and procedures with side-e�ects, is likely
to be too complex to be used with con�dence.

The Larch [7] family of languages and tools tackles this
problem by adopting a two-tiered speci�cation system. At
the top level speci�cations are written in an algebraic spec-
i�cation language called the Larch Shared Language (LSL)
which is based on �rst order logic with equality and induc-
tion. The second level is a behavioural interface speci�ca-
tion language (BISL) which is used to specify the details of a
particular implementation such as procedure side-e�ects and
aliasing using primitives de�ned in LSL. The tiered system
gives Larch great exibility since each target programming
language uses a speci�cally designed BISL.

At the time of writing there are at least 14 Larch BISLs.
Larch/CLU was the �rst Larch language and formed the ba-
sis for subsequent Larch languages, each one looking at dif-
ferent features of the target programming language. For ex-
ample, Larch/C++ [12] has been used for investigating inher-
itance in BISL speci�cations [11] and Larch/Modula-3 [10]
for concurrency issues.

The basic unit of speci�cation in LSL is a trait. A trait
introduces operator names, signatures (involving type, or
sort, names), and a set of axioms which de�ne properties
of the operators. Traits can be combined incrementally to
produce structured speci�cations. It is also possible to use
the same trait in several di�erent contexts by renaming sorts

81

and by renaming or overloading operators. An LSL speci�-
cation provides the BISL with reference points for describing
a mapping from the types in the interface speci�cation to
the sorts in the associated trait.

The Larch Prover (LP) is an automated proof assistant
based on classical set theory. LP can orient the properties
of an LSL trait into induction and deduction rules, AC op-
erator theories and rewrite rules. The user can then prove
assertions about semantic properties of the trait. LP proof
tactics include proofs by induction, contradiction and cases,
as well as standard automated reasoning techniques such as
normalisation and critical-pair computation.

Larch
Prover

Verification

Conditions

LSL
Specification

BISL

Specification

Code
Source

Figure 1: Larch/Aldor Development Diagram

Figure 1.4 gives an overview of how software is devel-
oped under the Larch/Aldor system described in this paper.
The BISL speci�cation (see Section 1.5) uses the primitives
de�ned by LSL speci�cations (Section 2) to document the
source code. These speci�cations are used to generate ver-
i�cation conditions (Section 1.7) from the source code; the
user may attempt to discharge these conditions using a the-
orem proving system such as LP.

1.5 Larch BISLs

Although each Larch BISL is tailored to the syntax of the
target programming language there are similarities between
all of them. The basic structure of a BISL speci�cation
comprises of pre- and post-conditions (usually introduced
by the keywords requires and ensures) for the function,
and a list of client-visible state potentially modi�ed by the
function (a modifies clause). Some Larch BISLs permit the
use of multiple pre- and post-conditions as in the Larch/C++

speci�cation of a square root function

double squareRoot(double x) throw(NEG_ROOT)

{

requires (x >= 0);

ensures (result = sqrt(x));

requires (x < 0);

ensures thrown(NEG_ROOT) = 1;

}

where sqrt() is an LSL operator which would be de�ned in
a separate trait. Omitting a modifies clause is equivalent
to writing `modifies nothing'.

BISL speci�cations refer to abstract objects speci�ed in
LSL: in the example above the identi�er `x' represents the
value of the abstract LSL object corresponding to the C++

function parameter `x'. The symbol `result' is a speci�ca-
tion variable representing the return value of the function.

The general aim when writing Larch speci�cations is
to keep the BISL speci�cation as simple as possible: do
as much work as possible in LSL, and only put the lan-
guage/implementation speci�c details in the BISL tier. The
justi�cation for this is that LSL speci�cations are easier to
reuse, have a straightforward semantics and are easier to
check for errors and omissions.

A BISL speci�cation should only be concerned with pro-
gram state and is therefore only suited for the imperative
parts of programming languages. Succinctness is acheived
through the use of operators provided by an LSL theory and
the resulting speci�cation is hopefully clearer and more pre-
cise than pure prose. These speci�cations can, therefore, be
used both as documentation to the user and as a guide or
contract to the implementor.

1.5.1 Work required to develop a Larch BISL

Developing a new Larch interface language is by no means
a simple task and one must decide how much work needs to
be tackled to meet the needs of the users of the language.
At one end of the spectrum the language might conceiv-
ably consist of just a syntax de�nition providing users with
nothing more than a clear and concise form of program docu-
mentation. This approach is only useful if the speci�cations
being created are not too complex and the meaning of any
operators used is clear.

At the other end of the spectrum we need a formal model
of the semantics of the target programming language as well
as a model of computation suitable for the Larch BISL [2];
we also need to know the semantics of the BISL. Once this
background theory has been obtained (a non-trivial prob-
lem) we turn to tool support for developers using the BISL.

A syntax checker might be considered to be the bare
minimum that any Larch system ought to provide, while
an interactive program development and veri�cation en-
vironment is perhaps an ultimate tool (e.g. Penelope for
Larch/Ada [6]). In between we have static data-ow analy-
sers which are able to perform lint-like checks augmented
by the information provided in speci�cations (e.g. LcLint [5])
and automated veri�cation condition generators.

1.6 Detecting Bugs

A tool such as LcLint uses the Larch interface speci�cations
to enable it to perform checks that standard lint can not.
For example, the interface speci�cation of a function can
state what part of the client-visible state might be modi�ed
by the function. Although this has a di�cult proof obliga-
tion in general, LcLint can highlight problems which might
otherwise go undetected. LcLint can also be particularly
useful if the programmer is adopting an abstract datatype
style of programming in C and wishes to ensure that they
have not accidentally violated their abstraction barriers.

1.7 Program Veri�cation

Throughout this paper we refer to program veri�cation and
veri�cation condition generators for imperative program-
ming languages. A veri�cation condition generator takes a

82

program and its speci�cation as input and reduces them to
a set of logical statements (called veri�cation conditions). If
these statements can be shown to be true then the program
is considered to be correct with respect to its speci�cation.
However, proving that an imperative program is correct with
respect to a given speci�cation is undecidable in general.

The generation of veri�cation conditions requires a for-
mal semantic model of the implementation language which
describes how each statement and control structure of the
program alters the runtime state. These models are com-
plex for commonly used imperative programming languages
such as C or Ada and so the programmer may decide to re-
implement the program in a language which has a simpler
semantic model and is therefore more amenable to mathe-
matical analysis. Functional programming languages such
as ML and Haskell are examples of this. Alternatively the
program may be implemented using a subset of features from
the target programming language where a formal model of
the semantics of the subset is clearly understood.

In this paper we propose a di�erent method: use the
Larch/Aldor interface speci�cations as high-level opera-
tional semantics. Assuming that we can provide formal se-
mantics for a small set of Aldor features such as assignment
and function application, a lightweight program veri�er may
be written. This program will examine Aldor programs an-
notated with Larch/Aldor speci�cations and inform the user
of any veri�cation conditions that it is unable to discharge.

It is our intention that the veri�cation conditions gener-
ated by our tool will be given to the user to be discharged
by hand or with the assistance of a theorem prover or proof
assistant. Indeed the user may simply wish to note any in-
teresting veri�cation conditions and continue working with
the assumption that they are true.

Our proposal is intended to reduce the amount of work
required to implement a program veri�cation tool for Al-
dor programs but relies on the interface speci�cations being
sound. These speci�cations must also provide su�cient in-
formation to assist the discharging of the veri�cation condi-
tions produced but we do not insist that they are complete.

2 Specifying the Axiom Library in LSL

In this section we discuss LSL speci�cations of AXIOM cat-
egories, and provide examples related to the case study con-
tained in Section 3.

We restrict our discussion to the algebraic hierarchy sup-
plied with AXIOM release 2.1, with particular reference to
the set of categories shown in Figure 2. The arrows in this
�gure represent inheritance of operational structure.

The basic category for describing collections of objects is
`SetCategory'. A descendent of `SetCategory', for example
`SemiGroup', is de�ned within AXIOM in terms of

1. a set of documented axioms that are expected to apply
to elements of any domain of type `SemiGroup'

2. a set of conditional attributes that a domain of type
`SemiGroup' may or may not have;

3. a set of operation names, each having a signature pos-
sibly involving other categories;

4. a set of methods for implementing some or all of the
operations;

5. the associated axioms, attributes, operations and meth-
ods of any ancestor categories.

EuclideanDomain

GcdDomain

CommutativeRingEntireRing

Ring

SetCategory

AbelianSemiGroup

AbelianMonoid

CancAbelianMonoid

AbelianGroup

Rng

Semi Group

Monoid

IntegralDomain

Figure 2: A sub-dag of the AXIOM algebra hierarchy

For example, the category `SemiGroup' provides the category
`SetCategory' with a closed multiplicative operator which
by axiom is associative and by conditional attribute may be
commutative.

The strong typing of AXIOM objects stems from the sig-
natures mentioned above: the system will reject commands
or procedures which violate operation signatures. It is how-
ever possible for system users and developers to violate the
axioms and conditional attributes (as seen in the `SINT' ex-
ample). Moreover the enforcement of type-correctness does
not guarantee that categories preserve the precise mathe-
matical semantics of the structures they are intended to rep-
resent. Both these potential shortcomings are addressed by
providing LSL speci�cations for each category in the hier-
archy. By providing a formal semantics for the axioms, at-
tributes and inherited properties of each category we allow
proofs that required properties hold throughout the hierar-
chy of speci�cations. By providing unambiguous mathemat-
ical descriptions of (and restrictions on) primitives de�ned
within categories we obtain reference points for proofs of
procedure correctness at the interface level.

2.1 `EuclideanDomain'

The LSL speci�cation of `EuclideanDomain' (Figure 3) in-
herits the properties of the speci�cation of `GcdDomain',
and includes properties of traits which represent the range
sorts of `euclidSize' and `divide'. When read by the
Larch Prover these inclusions provide 123 facts which can be
used to check that expected properties have been inherited.
Names and signatures are introduced for three AXIOM op-
erators and two conditional attributes. The assertions pro-

83

EuclidDomainCat (ED) : trait
includes

GcdDomainCat (ED for GD),

EDRecord,

EnumerableTO
introduces

euclidSize : ED ! N

isSizeLess : ED,ED ! Bool

divide : ED,ED ! R

multiplicativeValuation : ! Bool

additiveValuation : ! Bool
asserts

8 x,y,mult,rem : ED, r1 : R, n,m : N

(x := 0 ^ y := 0))

:(euclidSize(x*y) < euclidSize(x));

(y:=0)) 9 mult (9 rem ((x=(mult*y)+rem)

^ (rem = 0:ED _ (rem := 0:ED

^ (euclidSize(rem) < euclidSize(y))))));

isSizeLess(x,y) == :(y:ED = 0)

^ (x=0 _ euclidSize(x) < euclidSize(y));

euclidSize(divide(x,y).remainder)<euclidSize(y);

multiplicativeValuation)

euclidSize(x*y) = euclidSize(x)*euclidSize(y);

additiveValuation)

euclidSize(x*y) = euclidSize(x)+euclidSize(y)
implies

8 x,y: ED, n,m : N

(x := 0 ^ y := 0 ^ :(isUnit(y))))

euclidSize(x) < euclidSize(x*y);

(x := 0 ^ y := 0)) x*y := 0

Figure 3: LSL speci�cation of EuclideanDomain

vide formulae relating variables to operators. The �rst two
assertions are the standard axioms for a valuation function
from D n f0g into IN , where D is a domain. The remaining
assertions are formalisations of comments contained in the
AXIOM documentation of `EuclideanDomain'.

The implications in Figure 3 are facts in the �rst or-
der theory generated by the speci�cation. The �rst is a
standard result taken from a textbook [1] which is true for
every abstract Euclidean ring. Writing � for `euclidSize'
we have: Proof of 1st Theorem: �(x) � �(xy) by asser-
tion. If �(x) = �(xy), then x = mxy + r for some m; r in
the domain, with r = 0 or �(r) < �(xy). If r = 0, then
x = mxy and so my = 1, whence y is a unit. Conversely
�(x) � �(x(1�my)) = �(r) < �(xy) = �(x), giving another
contradiction.

The LP proof given as Figure 4 follows this proof closely,
although the existential operators binding the multiplier and
remainder have to be eliminated by Skolemization. The
second implication is a straightforward consequence of the
no (non-zero) zero divisors axiom, which is inherited from
`EntireRing'. Proving results in the theory of a trait serves
three purposes:

1. we increase our con�dence that the properties of in-
cluded traits have combined with the assertions to pro-
duce a speci�cation of the required computer algebra
structure.

2. we show that the LSL theory of the trait is contained
within the classical theory of (in this case) Euclidean
rings.

3. speci�cations which include the trait will have the im-
plications available as theorems, making it easier to

resume by => accept premise

instantiate x by xc, y by yc in EuclidDomainCat.1

replace variables by constants

res by cases euclidSize(xc) = (euclidSize(xc*yc))

case split

instantiate x by xc, y by xc*yc in EuclidDomainCat.2

prove ~(xc * yc = 0) intermediate result

instantiate x by xc, y by yc in EuclidDomainCatTheorem.2

[] conjecture intermediate result has been proved

declare operator skolmult : -> ED Skolemization

fix mult as skolmult in EuclidDomainCatTheorem.2.1

eliminate existential operator

declare operator skolrem : -> ED

fix rem as skolrem in EuclidDomainCatTheorem.4

res by cases skolrem = 0

instantiate x by xc, y by skolmult*yc in RingCat.10

use uniqueness of unity in a ring

[] case skolrem = 0

prove skolrem = xc - (skolmult * xc * yc)

resume by contradiction suppose not

complete compute critical-pair equations

[] contradiction subgoal

[] conjecture

inst x by xc, y by (1-(skolmult*yc)) in EuclidDomainCat.1

complete

[] case ~(skolrem = 0)

[] case euclidSize(xc) = euclidSize(xc*yc) 1st case proved

inst x by euclidSize(xc), y by euclidSize(xc*yc) in STO.1

[] case 2nd case proved by the strict total order axiom

[] => subgoal

[] conjecture the result has been proved

Figure 4: LP proof of EuclideanDomain implication

prove properties of more complicated structures. For
example the Larch Prover proof of the �rst implication
in Figure 3 uses the uniqueness of the multiplicative
identity, which was proved as an implication in the LSL
speci�cation of `Ring'.

Another way of considering the implications is that failure
to prove expected results indicates that the trait does not
specify the intended object. A large proportion of time spent
de-bugging LSL speci�cations consists of the identi�cation
of points where such proofs fail, and correcting the speci�-
cation accordingly.

2.2 Integers in AXIOM

We now provide a speci�cation of AXIOM's model for the
integers, the category `IntegerNumberSystem'. For ease
of exposition the speci�cation (Figure 5) has been sim-
pli�ed so that certain AXIOM operations (such as mod-
ular arithmetic) have been omitted. The inclusions show
`IntegerNumberSystem' is a totally-ordered Euclidean do-
main of characteristic zero. We introduce operators which
allow conversion to the range space for `euclidSize', itera-
tion over the sort in the order 0; 1;�1; 2;�2; 3; � � �, and pro-
vision of a maximum value from a pair of values. The �nal
two assertions ensure that domain operations are compatible
with the ordering.

The attribute `multiplicativeValuation' requires that
the `euclidSize' is a homomorphism from the sort `INS'
into IN . The attribute `canonicalUnitNormal' requires
that associates have the same canonical normal form. The
`generated by' clause allows induction over the sort, with
`init' as basis value. This induction schema, together with
a case split x < 0; x = 0; 0 < x, is used to obtain an LP
proof of the implied result. Proving the result shows that

84

IntNumberSystCat (INS) : trait
includes

EuclidDomainCat (INS for ED),

StrictTotalOrder (<, INS),

CharZeroCat (INS)
introduces

__*__ : INS,N ! N

convert : INS ! N

init : ! INS

nextItem , abs: INS ! INS

max : INS,INS ! INS
asserts

INS generated by init, nextItem

8 x,y : INS, n : N, u:UF

multiplicativeValuation;

canonicalUnitNormal;

init == 0;

nextItem(x) = nextItem(y) == x = y;

nextItem(x) := init;

nextItem(x) == if x = 0 then 1 else

if x < 0 then 1-x else -x;

max(x,y) == if :(y < x) then y else x;

convert(x) = (max(x))*(succ(0):N);

x := 0) euclidSize(x) = convert(x);

(0 < x) ^ (y < z)) (x*y) < (x*z);

(x < y)) (x+z) < (y+z)
implies

converts

euclidSize

exempting euclidSize(0)

Figure 5: LSL speci�cation of IntegerNumberSystem

when the interpretation of all other operators is �xed, there
is a unique interpretation for `euclidSize', apart from the
value `euclidSize(0)' which exists, but is unspeci�ed.

We now have everything in place for specifying the
AXIOM domain `Integer' (Figure 6). The attribute
`canonicalsClosed' ensures that a product of canonicals is
itself canonical. `unitNormal(x)' was �rst introduced in the
speci�cation of `IntegralDomain', and is required to return
a record `[unit, canonical, associate]' such that `x =

unit*canonical' and `associate*unit = 1'. We have now
interpreted this requirement in the knowledge (proved im-
plications) that for this particular integral domain the units
are 1 and �1, and the associate class of `x' consists of `x'
and `-x'.

AXInteger : trait
includes

IntNumberSystCat (Z for INS)
introduces

factorial : Z ! Z
asserts

8 x,y : Z

canonicalsClosed;

unitNormal(x) == if x < 0 then [-1,-x,-1]

else [1,x,1];

factorial(0) == 1;

0 < x) factorial(x) = x*factorial(x-1)
implies

8 x,y : Z

(x =1 _ x = -1) , isUnit(x);

areAssociates(x,y) , y = -x _ y = x;

Figure 6: LSL speci�cation of Integer

Other AXIOM domains of type `EuclideanDomain' can
be speci�ed in a similar manner. A system developer need
only check that a new domain speci�cation is consistent with
the de�nitions of the operators introduced in the traits asso-
ciated with the AXIOM algebraic hierarchy. The LSL traits
provide the abstract concepts required for reasoning about
AXIOM and Aldor programs. In particular formal de�ni-
tions of the sort `Z' and the operator `factorial' have been
given; these will be used as reference points at the interface
level, as discussed in the following section. The LP proofs
of results in the theories of the traits give the developer
con�dence that the abstract concepts are exible enough to
allow many implementations, but rigourous enough to rule
out mathematically incorrect results.

3 Larch/Aldor

In this section we look briey at the design and implementa-
tion of a Larch behavioural interface speci�cation language
(BISL) for Aldor. We then concentrate on showing how
this language and associated tools can be used to assist in
the development of Aldor programs, either for stand-alone
applications or for AXIOM library functions.

As described in the introduction we feel that full program
veri�cation is perhaps excessive for the types of systems we
are dealing with. Instead we adopt a more lightweight ap-
proach using tools to generate veri�cation conditions based
on Larch interface speci�cations. The user may wish to note
the veri�cation conditions as interesting facts to be recorded
in the documentation, or try to discharge them using their
favourite theorem proving system or by hand.

3.1 Program Analysis

Initially a simple data-ow analyser for Aldor was imple-
mented in Aldor itself. This program accepts the parse tree
from the current Aldor compiler as input and emits warn-
ing messages if certain data-ow anomalies are detected.
These include use-before-de�nition and de�nition-without-
use anomalies. The compiler already detects these anoma-
lies in certain circumstances but our analyser attempts to
be more thorough. For example, in the Aldor program

local a,b,c:Integer;

a := randomValue();

b := randomValue();

if (a > b) then

c := 42;

print << c << newline;

the variable `c' is only de�ned if `(a > b)'. Our analyser
follows both possible execution paths and warn the user that
`c' might be unde�ned at the last line.

This initial work has given the authors valuable experi-
ence for integrating new components into the existing Aldor
compiler. Using this knowledge we are proceeding to imple-
ment a more powerful tool to provide \lightweight" veri�ca-
tion of Aldor programs written using Larch/Aldor.

3.2 Program Veri�cation

If a function F has pre-condition fPg and post-condition
fQg then an application of F will at least generate a veri�ca-

85

tion condition that fPg is satis�ed according to the current
context (program state). Our veri�cation condition gener-
ator will assume that fQg speci�es the semantics of F and
use it to extend the context. We trust that fQg contains suf-
�cient information to help discharge subsequent veri�cation
conditions: if not the user may need to extend fQg.

3.2.1 Loop-free programs with assignment

Consider the following Larch/Aldor program fragment:

Factorial: (n:Integer) -> Integer;

++} uses AXInteger(Integer for Z);

++} requires ~(n < 0);

++} ensures result = factorial(n);

a := Factorial 6;

where the `++}' symbol marks the Larch/Aldor speci�cation
and the other two lines are Aldor source code.

The �rst line of the speci�cation states that our LSL
theory can be found in the trait AXInteger and that the
Aldor type Integer corresponds to the LSL sort Z (see Sec-
tion 2.2). The requires clause uses the LSL `<' operator
to compare the LSL value of the Aldor identi�er `n' with
the LSL value of the Aldor value 0. Similarly the ensures

line states that the result of the `Factorial' function (repre-
sented by the speci�cation variable `result') is equal to the
value obtained by applying the LSL `factorial' operator to
the LSL value of the Aldor identi�er `n'.

As described earlier, the requires clause de�nes the pre-
condition of this function while ensures de�nes the post-
condition. If the pre-condition holds when `Factorial' is
invoked then our speci�cation states that it will terminate
and when it does the post-condition will hold. If the pre-
condition is not satis�ed then the behaviour of the function
is unde�ned: it might run for ever, return any value etc.

To allow useful veri�cation conditions to be generated
we require a speci�cation of the assignment operator. This
cannot be de�ned in Larch/Aldor and would be part of the
meta theory used by the veri�cation condition generator.
For this example we will assume its speci�cation is

(:=) : (var:Variable, value:Integer) -> ();

++} requires declared(var);

++} ensures var' = value;

++} modifies var;

The pre-condition is that the variable being assigned is
declared and has storage allocated to it while the post-
condition is that the variable will have the speci�ed value.
The primed notation used in the post-condition represents
the value of `var' in the post-state to di�erentiate it from
its value in the pre-state.

To verify that the program fragment is correct with
respect to these speci�cations we derive pre- and post-
conditions for each statement With our approach this is
simply a matter of using the interface speci�cations with
appropriate renaming:

a := Factorial 6;

++> requires declared(a) /\ (~(6 < 0));

++> ensures (a' = factorial 6);

++> modifies a;

After simpli�cation we obtain the veri�cation condition
that `declared(a)' must hold before the assignment is exe-
cuted. Assuming this is true we can proceed to analyse the
next program statement knowing that the `a' now has the
value 6!. If our interface speci�cations are correct then we
can be con�dent that our program is correct once all the
veri�cation conditions have been successfully discharged.

3.2.2 Going loopy

The speci�cation and veri�cation of loops has not been ad-
dressed very much in the Larch literature to date, perhaps
because BISLs are mainly concerned with procedures and
functions. In our approach we adopt the abstraction mech-
anisms of procedures and treat a loop as a building block,
just like a procedure, which has pre- and post-conditions.
Following the Larch approach we use the modifies clause
to indicate which parts of the client-visible state might be
altered when the loop body is executed.

In addition we allow a loop invariant to be speci�ed along
with a measure function to enable veri�cation conditions to
be generated for termination proof attempts. The measure
function must be de�ned over a well-founded ordered set
such as the natural numbers and must decrease monotoni-
cally with each iteration of the loop. It will adopt a mini-
mum value when the loop terminates, e.g. 0 for the naturals.

When a loop is encountered a veri�cation condition is
generated to show that the pre-condition of the loop is sat-
is�ed. With our approach we do not need to immediately
generate veri�cation conditions for the loop body to obtain
the state of the program when the loop terminates. Instead
we rely on the post-condition to extend the current context
and to provide enough information to enable the veri�cation
condition generator to proceed successfully with the state-
ments following the loop. The loop itself can be analysed
separately using the context which existed prior to the loop.

A possible implementation of the factorial function might
look like the following:

Factorial(n:Integer):Integer ==

{

local i, x:Integer;

i := 0; x := 1;

while (i < n) repeat

++} modifies i, x;

++} ensures (x = factorial n) /\ (i = n);

++} invariant x = factorial i;

++} measure n - i;

{

i := i + 1;

x := x * i;

}

return x;

}

There are no restrictions on the program state before the
loop begins and the post-condition is that `x' holds the value
n!. The only modi�cations to client-visible state during the
execution of the loop are the variables `x' and `i' and their
values after the loop are speci�ed in the post-condition.

Applying our lightweight veri�cation process to this rou-
tine, we begin with the pre-condition of `Factorial', namely
:(n < 0). Proceeding informally, the assignments to `i' and
`x' produce the context :(n < 0) ^ (x0 = 1) ^ (i0 = 0)

86

where the subscripts are used to distinguish between the
LSL values of `i' and `x' in di�erent program states.

The precondition of the loop is vacuous and so the con-
text after the loop terminates is :(n < 0)^(x0 = 1)^(i0 =
0) ^ (x1 = factorial n) ^ (i1 = n). The post-condition of
the function can be discharged by observing that the LSL
value of `x' in the return statement is x1 which is equivalent
to factorial n.

Assuming the implementation of the loop body is correct
then we can be con�dent that the procedure as a whole
is correct with respect to its interface speci�cation. Using
induction we can show that for the base case where (n= 0)
the loop invariant is satis�ed; assuming the invariant is true
when (i= k) then we must show that it is also true after
one more iteration. This is achieved fairly easily using the
axiom (n+1)! = (n+1)n! which forms part of the LSL tier.

4 Issues and Conclusions

The approach of veri�cation condition generation described
in this paper is modular: we did not have to verify that the
factorial function was correct to be able to generate the nec-
essary veri�cation conditions for `a := Factorial 6'. In-
deed during the early stages of program development the
factorial function may only exist as a procedure stub with
an interface speci�cation and no code. Similarly for loops
and other block structures. Futhermore we allow the user
to decide what to do with the veri�cation conditions gen-
erated. They may attempt to discharge them (by hand or
using appropriate machinery) or simply note them as useful
conditions on the use of the program.

At some point in the veri�cation process the user ought
to check that the functions do indeed satisfy their inter-
face speci�cation but this does not need not to be repeated
whenever the rest of the program is veri�ed. This has a
signi�cant advantage when verifying large programs which
are constantly evolving. Moreover the modularity of LSL
speci�cations allows the reuse of abstractions in a variety of
system-building contexts: it is su�cient to provide one trait
which de�nes, say, strict total ordering that can be used as
often as needed.

Another important consideration is that we adopt a for-
wards rather than a backwards analysis of the program.
Forward program analysis program is generally considered
to be undesirable since the veri�cation condition generator
will reach the end of a function with a context containing
all facts which can be derived from the semantics of the
programming language and the statements in the function
body. Many of these statements will be redundant but we
do not anticipate this causing problems due to the length of
CAS routines encountered so far and the amount of memory
available to modern workstations.

At the time of writing we have speci�ed most of the AX-
IOM category hierarchy, and are currently specifying entities
at the domain level. We have also implemented a data-ow
analyser for Aldor programs (see Section 3.1) and are cur-
rently implementing a veri�cation condition generator based
on the ideas discussed here.

References

[1] Allenby, R. Rings, Fields and Groups. Edward
Arnold, 1991.

[2] Chalin, P. On the Language Design and Semantic
Foundation of LCL, a Larch/C Interface Speci�cation
Language. PhD thesis, Concordia University, Canada,
1995. Available as CU/DCS TR 95-12.

[3] Davenport, J., Gianni, P., Jenks, R., Miller, V.,

Morrison, S., Rothstein, M., Sundaresan, C., Su-

tor, R., and Trager, B. Scratchpad. Mathematical
Sciences Department, IBM Thomas Watson Research
Center, 1984.

[4] Dingle, A., and Fateman, R. J. Branch cuts in
computer algebra. In ISSAC '94: Proceedings of the
1994 International Symposium on Symbolic and Alge-
braic Computation (1994), ACM Press.

[5] Evans, D., Guttag, J., Horning, J., and Tan,

Y. M. LCLint: A tool for using speci�cations to check
code. ACM SIGSOFT Software Engineering Notes 19
(1994), 87{97.

[6] Guaspari, D., Marceau, C., and Polak, W. Formal
veri�cation of Ada programs. In First International
Workshop on Larch (July 1992), U. Martin and J. M.
Wing, Eds., Springer-Verlag.

[7] Guttag, J. V., and Horning, J. J. Larch: Languages
and Tools for Formal Speci�cation. Springer-Verlag,
1993.

[8] Jenks, R. D., and Sutor, R. S. AXIOM: The Sci-
enti�c Computation System. Numerical Algorithms
Group, Ltd. and Springer-Verlag, 1992.

[9] Jones, C. B. Systematic Software Development using
VDM. Prentice Hall International, 1990.

[10] Jones, K. D. LM3: a Larch interface language for
Modula-3. Tech. Rep. 72, SRC, Digital Equipment Cor-
poration, June 1991.

[11] Leavens, G. T. Inheritance of interface speci�cations.
In Proceedings of the Workshop on Interface De�nition
Languages (1994), vol. 29(8), pp. 129{138.

[12] Leavens, G. T. Larch/C++ Reference Manual. See
http://www.cs.iastate.edu/~leavens/, 1997.

[13] Potter, B., Sinclair, J., and Till, D. An intro-
duction to formal speci�cation and Z. Prentice Hall
International, 1991.

[14] Redfern, D. The Maple Handbook. Springer-Verlag,
1996.

[15] Watt, S. M., et al. A �rst report on the A] com-
piler. In ISSAC '94: Proceedings of the 1994 Interna-
tional Symposium on Symbolic and Algebraic Compu-
tation (1994), ACM Press, pp. 25{31.

[16] Watt, S. M., et al. AXIOM Library Compiler User
Guide. NAG Ltd., 1995.

[17] Wolfram, S. Mathematica: A system for doing math-
ematics by computer. Addison Wesley, 1991.

87

