FORMAL METHODS FOR
EXTENSIONS TO CAS

Martin Dunstan, Tom Kelsey, Ursula Martin & Steve Linton
School of Computer Science
University of St Andrews
{mnd,tom,um,sal}@dcs.st-and.ac.uk

September 21, 2000
INTRODUCTION
Computer Algebra Development

Problems

$\int_{x=0}^{\infty} \frac{dx}{4x^4 + 1} = 0 \quad \text{in AXIOM}$

$\int_{0}^{\infty} \frac{\cos x}{x^2 + 1} dx \in \mathbb{C} \quad \text{in Maple}$

Designers

- Type system & default methods
- Sound mathematical algorithms

Library Developers

- Are the type system and methods unambiguous?
- Are the restrictions on algorithms explicit?
Lightweight Formal Methods

Lightweight?

- Jackson and Wing, *IEEE Computer* 1996
- Replace provable correctness of system by an emphasis on the reduction (if not the elimination) of design and implementation errors.

Applicability to CAS

- Parts of CAS are formal enough
- Verification of maths code can be non-trivial
- Developers need precise definitions and conditions for use
Aims

Larch and AXIOM

- Larch is two-tiered: abstract and interface
- AXIOM is two-tiered: category and domain
- LSL specification of type hierarchy
- Larch/Aldor specification of new code

Benefits

- Unambiguous definition of primitives
- LP proofs of abstract properties
- Automatic generation of Verification Conditions
- LP available to discharge VCs
Development Diagram

Larch Prover

LSL Specification

BISL Specification

Source Code

Verification Conditions
Abstract Algebra

Commutative Ring

- Additive abelian group - $a + b = b + a$, $a + 0 = a$
- Multiplicative abelian monoid - $a \cdot b = b \cdot a$, $a \cdot 1 = a$
- Multiplication distributes over addition
 $a \cdot (b + c) = a \cdot b + a \cdot c$
- Example - polynomials over \mathbb{Q}

Integral Domain

- Commutative ring with no zero divisors
- Two non-zeros multiply to a non-zero
- Example - the integers \mathbb{Z}

Field

- Integral domain with multiplicative inverses
- If $a \neq 0$, then $\exists b$ such that $a \cdot b = 1$
- Examples - the reals \mathbb{R} and the rationals \mathbb{Q}
CASE STUDY
Motivation

- Given side-conditions for AXIOM types
- Conditions are informal comments which can be inaccurate

```
ComplexCategory(R:CommutativeRing):
  : : :
if R has IntegralDomain then IntegralDomain
if R has Field then Field -- this is a lie; we
must know that x**2+1 is irreducible in R
  : : :
```

We know that augmenting a commutative ring with an
imaginary element should yield another commutative ring

- The library developer
 - may not be aware of the comments
 - can be misled by the comments
ComplexCategory (CR) : trait

assumes CommRingCat (CR)

includes RequirementsForComplex (CR)

introduces

imaginary, 0, 1 : → T

: : :

asserts ∀ w,z : T

imaginary == comp(0,1);
0 == comp(0,0);
1 == comp(1,0);

: : :

implies

AbelianGroup(T,+),
AbelianMonoid(T,*)
Distributive(+,*,T),

∀ z,w : T

imaginary*imaginary == -1;

\}

A

B

A: Commutative ring in gives commutative ring out

B: Check on basic property of imaginary
TypeConditions (CR,T) : trait
includes
 CommRingCat (CR), ComplexCategory (CR)
introduces
 TC1, TC2, invsExist : → Bool
asserts ∀ a,b,c : CR
 TC1 ⇒ (a ¬= 0 ⇒ a*a ¬= -(b*b));
 TC2 ⇒ (a*a ¬= -1);
 invsExist ⇒ (a ¬= 0 ⇒ ∃ c (a*c = 1))
implies ∀ v,z,w : T
 TC1 ∧ nZD ∧ invsExist
 ⇒ (w ¬= 0 ⇒ ∃ v (w*v = 1)); \{ A \}
 TC2 ∧ nZD ∧ invsExist
 ⇒ (w*z=0 ⇒ w=0 ∨ z=0); \{ B \}
 TC1 ∧ nZD ⇒ (w*z=0 ⇒ w=0 ∨ z=0) \{ C \}

If input is:
A: a field with TC1, then output is a field
B: a field with TC2, then output is an integral domain
C: an integral domain with TC1, then output is an integral domain
Interface Approach

Same problem in a different, yet complimentary, way

1. Define the functor Complex in Larch/Aldor

 \[
 \begin{aligned}
 &\{+\}\ \text{requires} \ \text{isIntDomain}(\text{CR}) \\
 &\land \ \neg \exists \ x, y : \text{CR} \ \bullet \ (x \neq 0 \Rightarrow x^2 + y^2 = 0); \\
 &\{+\}\ \text{ensures} \ \text{isIntDomain}(%); \\
 &\{+\}\ \text{modifies} \ \text{nothing}; \\
 &\text{Complex}(\text{CR:CommutativeRing}):\text{CommutativeRing};
 \end{aligned}
 \]

2. Instantiation with Int generates the VC

 \[
 \text{isIntDomain(Int)} \land \neg \exists x, y : \text{Int} \bullet (x \neq 0 \Rightarrow x^2 + y^2 = 0)
 \]

3. We obtain the useful post-condition

 \[
 \text{isIntDomain(Complex(Int))}
 \]

4. Instantiation with PrimeField 5 generates the VC

 \[
 \neg \exists x, y : \text{PrimeField5} \bullet (x \neq 0 \Rightarrow x^2 + y^2 = 0)
 \]

 which can be proved false \((x = 2, y = 4)\)
LSL Specifications

- Exist for every algebraic AXIOM category
- Exist for AXIOM functors (Fraction, Complex, ⋯)
- Refined using textbook properties (e.g. prove, in LP, the quotient rule in the theory of DifferentialRing)
- Provide well defined primitives and conditions for use at the interface level
- Highlight areas in which computational maths differs from abstract maths
- Can be used as a formal basis for other CAS implementations
Interface Specification

Larch/Aldor
- Formal notation for describing AXIOM/Aldor behaviour
- Allows Larch annotations to Aldor code to be recognised
- Provides mechanism for generating VCs

VCs
- Many discharge automatically
 \[\text{isIntDomain}(\text{PrimeField } 5) \]
- Others are more interesting
 \[\text{isOdd}(\text{Order } G : \text{Group}) \iff \text{isSoluble } G \]
- Aid compiler optimisation and method selection
- VC generation (ideally) happens in the compiler