
FOAM

Pete Huerter
Stephen Watt

Department of Computer Science
The University of Western Ontario

huerter0@csd.uwo.ca
watt@csd.uwo.ca

January 18, 2001



FOAM

Pete Huerter (huerter0@csd.uwo.ca) Stephen Watt (watt@csd.uwo.ca)

1 Introduction

...

Aldor has many interesting features.

• Types are first class values. Aldor is statically typed, but types are values. Programs
may be parameterized by types provided at execution time.

– How are domains represented at the FOAM level?

– How are categories represented at the FOAM level?

• Post facto extensions to libraries.

• Functions are first class values. Aldor provides mechanisms for composing and manip-
ulating functions in usefull ways.

• Dependent types. A Dependent type is a type T in which the type of one subexpression
of T depends on the value of another.

• Control abstraction via generators and type-specific tests.

It helps, in understanding the FOAM, to consider how these features are represented
at a lower level. Such features require a unique and powerfull IR. Indeed, many of the
characteristics of the Aldor language are visible in its FOAM representation. The FOAM
is an HIR, or high-level intermediate representation. The functionality of its instruction set
mirrors that of Aldor.

In the pages to follow, we will stip away the syntactic sugar of Aldor revealing its core,
the FOAM.

...

1



2 Terminology

lexical binding

A binding in a lexical environment.

lexical closure

A function that, when invoked on arguments, executes the body of a lambda expression in
the lexical environment that was captured at the time of the creation of the lexical closure,
augmented by bindings of the function’s parameters to the corresponding arguments.

lexical environment

That part of the environment that contains bindings whose names have lexical scope. A
lexical environment contains, among other things: ordinary bindings of variable names to
values, lexically established bindings of function names to functions, macros, symbol macros,
blocks, tags, and local declarations (see declare).

lexical scope

Scope that is limited to a spatial or textual region within the establishing object. Implies
that the only variables visible at a given point in a program are those that have been created
locally or imported into scopes surrounding the current point.

lexical variable

A variable the binding for which is in the lexical environment.

environment

Environments are essentially dictionaries that tie names to values. In Aldor, an environment
is called a domain. Domains can be created and manipulated dynamically in Aldor. An
environment describes the denotation or meaning of an arbitrary term.

closure

Functions may depend on externally defined values. In the FOAM, functions are first class
values. A closure dynamically captures the creation environment of a new function value.

When a function expression (anonymous function, lambda expression) is evaluated, it
captures the lexical environment in which it appears, creating a lexical closure. The values of
the variables which are visible in the scope of the function expression are then avaiable when
it is eventually applied to a set of arguments. Function expressions evaluate to functions.

(s1 : S1, ..., sn : Sn) : T == E is shorthand for
f : (s1 : S1, ..., sn : Sn)− > T == (s1 : Sn, ..., sn : Sn) : T + − > E

fluid variables

A fluid variable exists throughout the lifetime of a program, and its value is always the most
recent extant binding of the variable.

2



A fluid declaration declares that the given identifiers should be treated as having dynamic,
as opposed to lexical scope. The declaration is enforced within the lexical scope containing
the declaration.

See rules in Aldor User Guide (pg. 115...)

protocol

A Protocol is used to describe the interface through which an object should be called or
accessed.

environment

A set of bindings.

environment object

An object representing a set of lexical bindings, used in the processing of a form to provide
meanings for names within that form.

binding

An association between a name and that which the name denotes. “A lexical binding is a
lexical association between a name and its value.”

3 Data Types, Values, Built-in Operations

A data type declares or restricts the domain of an object declared of that type to the set
of values associated with that type. Types are a classification mechanism for values. Each
data type has a set of values associated with it.

The data types of the FOAM fall into three main categories, primitive data types, refer-
ence data types, and generic data types. The primitive data types are further sub-divided
into the type bool, the integral data types and the floating-point data types which together
form the numeric types of the FOAM. This classification is illustrated in Figure below.

3



TYPES

PRIMITIVE TYPES

REFERENCE TYPES

Bool

NUMERIC TYPES

FLOATING-POINT

SFlo
DFlo

INTEGRAL

Byte
HInt
SInt
Char

(primitive values)

(reference values)

Ptr

Clos

Env

Arr

Rec

Prog
NOpBInt

GENERICS

Arb
Nil

Word

Values associated with the primitive types, or basic types, can be used freely and efficiently
in imperitive languages. Operations on basic values often correspond to single machine
instructions or short sequences of machine instructions, so the operations are implemented
efficiently. At the HIR level, these instructions are simulated by the FOAM in the form of
built-in operations. The type Bool in the above classification is treated separately, as there
is typically no Boolean basic type on modern architectures. It is commonly encoded using
an integral basic type, and so its classification is primitive. The other primitive types are
supported by modern architectures.

Reference types

or non-primitive types, why called reference, list ’em. The Nil data type ... Nothing. 1-
element type. Distinguished value.

Generic types

Arb and Word are defined according to size. There is no specific value set associated with
each ...

Types are first class values.

Functions are first class values.

Plan:

4



• discuss how they fit into the big picture.

• for each type:

– introduce the actual values and/or use of each type with its built-ins. ieee fp,
2’s-complement stuff here.

– specific uses of each type in the AM. This sets the stage for how these things can
be used.

• Talk about how the types work together (ie arithmetic through single integer, casting
and type promotion etc... . there is a cast instruction but there are also many built-ins
dedicated to casting).

3.1 Primitive Data Types

The primitive data types of the FOAM are listed below, along with their intended representa-
tion. The ANSI C-like long data type is replaced with the generic BInt (big integer) reference
data type which represents integers of arbitrary size (discuss some issues like efficiency and
why this decision was made, perhaps a hidden long imp. subset of BInt implementation).

3.2 Representation of Primitives

The following table describes the intended representation of each of the primitive data types
of the FOAM.

Primitive Type Representation
Byte Unsigned integer represented in 8-bits.
HInt Half precision integer. Signed 2’s complement integer in 16-bits.
SInt Single precision integer. Signed 2’s complement integer in 32-bits.
SFlo Single precision floating point. IEEE format. Maps to the ANSI C float type.
DFlo Double precision floating point. IEEE format. Maps to the ANSI C double type.
Char ASCII Character, 8-bit representation.
Bool Boolean value, 0 or 1, 8-bit representation.

Table ?

The primitive data types of the FOAM.

5



3.3 Primitive Values

Since the AM is designed to be platform independent the intended values of each type are
defined. The intended values of a primitive data type are of course dependent on the intended
representation of that primitive data type as outlined above. The intended representation
of each primitive data type must be capable of physically representing the indended value
set of that data type.

The actual values are dependent upon the accuracy of the implementation of the AM and
perhaps on platform. This manual discusses the FOAM independent of platform. FOAM
code is currently targeted to ANSI C and Common Lisp (...). A FOAM interpreter written
in C has also been implemented. The type correspondence between the C language and the
FOAM is outlined for each primitive type.

The following table describes the intended value set of each of the primitive data types
of the FOAM.

Primitive Type Values
Byte At least the positive integers 0..27 − 1. Capable of 0..28 − 1.
HInt Integral values −215..215 − 1 inclusive.
SInt At least the values −223..223 − 1. Capable of values −231..231 − 1.
SFlo IEEE 754 32-bit single precision value set ∗.
DFlo IEEE 754 64-bit double precision value set ∗.
Char 0..27 − 1 inclusive. The ASCII character set.
Bool Integral values 0 or 1.

Table ?

The value sets of the primitive types of the FOAM.

∗ As specified in IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard

754-1985 (IEEE, New York).

6



3.4 Built-In Operations on Primitive Types

Byte

Type Byte is used to compactly represent small positive integers. This is primarily useful in
arrays. To compute with Byte values, convert them to SInt first. Type Byte must be able to
represent at least the values 0..27−1. Bytes are used for numeric data and are never subject
to character set conversion.

FOAM instruction Description

Byte0: () → Byte
Byte1: () → Byte
ByteMin: () → Byte
ByteMax: () → Byte

Table ?

Byte size integer built-in operations

Short Integer

Type HInt is used to compactly represent small signed ”half precision” integers. This is
primarily useful in arrays. To compute with Byte values, convert them to SInt first. Type
HInt must be able to represent at least the values −215..215 − 1.

FOAM instruction Description

HInt0: () → HInt
HInt1: () → HInt
HIntMin: () → HInt
HIntMax: () → HInt

Table ?

Short integer built-in operations

Integer

Type SInt is used to represent signed single precision integers. Type SInt must be able to
represent at least the values −223..223 − 1.

7



The values behave as if represented in two’s complement for the logical operations (Bool,
Not, And, Or). If arithmetic operations overflow, the result is not defined and may or may
not equal the true value modulo 2machine−wordsize.

The operations SIntPlusMod, SIntMinusMod, SIntTimesMod require their first 2 argu-
ments to be in the range 0..m − 1, for m = third argument. Otherwise the result is not
defined.

The operation SIntLength is the number of bits required to represent the number in two’s
complement and in particular can be less than the word size.

8



FOAM instruction Description

SInt0: () → SInt
SInt1: () → SInt
SIntMin: () → SInt
SIntMax: () → SInt
SIntIsZero: (SInt) → Bool
SIntIsNeg: (SInt) → Bool
SIntIsPos: (SInt) → Bool
SIntIsEven: (SInt) → Bool
SIntIsOdd: (SInt) → Bool
SIntEQ: (SInt,SInt) → Bool
SIntNE: (SInt,SInt) → Bool
SIntLT: (SInt,SInt) → Bool
SIntLE: (SInt,SInt) → Bool
SIntNegate: (SInt) → SInt
SIntPrev: (SInt) → SInt
SIntNext: (SInt) → SInt
SIntPlus: (SInt,SInt) → SInt
SIntMinus: (SInt,SInt) → SInt
SIntTimes: (SInt,SInt) → SInt
SIntTimesPlus: (SInt,SInt,SInt) → SInt
SIntMod: (SInt,SInt) → SInt
SIntQuo: (SInt,SInt) → SInt
SIntRem: (SInt,SInt) → SInt
SIntDivide: (SInt,SInt) → (SInt,SInt)
SIntGcd: (SInt,SInt) → SInt
SIntPlusMod: (SInt,SInt,SInt) → SInt
SIntMinusMod: (SInt,SInt,SInt) → SInt
SIntTimesMod: (SInt,SInt,SInt) → SInt
SIntTimesModInv: (SInt, SInt, SInt, DFlo) → SInt
SIntLength: (SInt) → SInt
SIntShiftUp: (SInt,SInt) → SInt
SIntShiftDn: (SInt,SInt) → SInt
SIntBit: (SInt,SInt) → Bool
SIntNot: (SInt) → SInt
SIntAnd: (SInt,SInt) → SInt
SIntOr: (SInt,SInt) → SInt
SIntXOr: (SInt,SInt) → SInt

Table ?

Integer built-in operations

9



Single Precision Floating-point

SFlo is single precision floating point. This type is used primarily for storing large quantities
of floating pt data. In the tree form of Foam, SFlo values are represented in a machine-
dependent single precision floating point format. The linear representation presently uses
IEEE single precision format, however, this will change to extended single precision format.

SFloMax is the largest positive number. SFloEpsilon is the smallest positive number
which can be represented. SFloMin is the most negative number which can be represented.

10



FOAM instruction Description

SFlo0: () → SFlo
SFlo1: () → SFlo
SFloMin: () → SFlo
SFloMax: () → SFlo
SFloEpsilon: () → SFlo
SFloIsZero: (SFlo) → Bool
SFloIsNeg: (SFlo) → Bool
SFloIsPos: (SFlo) → Bool
SFloEQ: (SFlo,SFlo) → Bool
SFloNE: (SFlo,SFlo) → Bool
SFloLT: (SFlo,SFlo) → Bool
SFloLE: (SFlo,SFlo) → Bool
SFloNegate: (SFlo) → SFlo
SFloPrev: (SFlo) → SFlo
SFloNext: (SFlo) → SFlo
SFloPlus: (SFlo,SFlo) → SFlo
SFloMinus: (SFlo,SFlo) → SFlo
SFloTimes: (SFlo,SFlo) → SFlo
SFloTimesPlus: (SFlo,SFlo,SFlo) → SFlo
SFloDivide: (SFlo,SFlo) → SFlo
SFloRPlus: (SFlo,SFlo,SInt) → SFlo
SFloRMinus: (SFlo,SFlo,SInt) → SFlo
SFloRTimes: (SFlo,SFlo,SInt) → SFlo
SFloRTimesPlus: (SFlo,SFlo,SFlo,SInt) → SFlo
SFloRDivide: (SFlo,SFlo,SInt) → SFlo
SFloDissemble: (SFlo) → (SInt,SInt,Word)
SFloAssemble: (SInt,SInt,Word) → SFlo
SFloRound: (SFlo) → BInt
SFloTruncate: (SFlo) → BInt
SFloFraction: (SFlo) → SFlo

Table ?

Single precision floating-point built-in operations

Double Precision Floating-point

DFlo is double precision floating point. In the tree form of Foam, DFlo values are represented
in a machine-dependent double precision floating point format. The linear representation
presently uses IEEE double precision format, however, this will change to extended double

11



precision format.

FOAM instruction Description

DFlo0: () → DFlo
DFlo1: () → DFlo
DFloMin: () → DFlo
DFloMax: () → DFlo
DFloEpsilon: () → DFlo
DFloIsZero: (DFlo) → Bool
DFloIsNeg: (DFlo) → Bool
DFloIsPos: (DFlo) → Bool
DFloEQ: (DFlo,DFlo) → Bool
DFloNE: (DFlo,DFlo) → Bool
DFloLT: (DFlo,DFlo) → Bool
DFloLE: (DFlo,DFlo) → Bool
DFloNegate: (DFlo) → DFlo
DFloPrev: (DFlo) → DFlo
DFloNext: (DFlo) → DFlo
DFloPlus: (DFlo,DFlo) → DFlo
DFloMinus: (DFlo,DFlo) → DFlo
DFloTimes: (DFlo,DFlo) → DFlo
DFloTimesPlus: (DFlo,DFlo,DFlo) → DFlo
DFloDivide: (DFlo,DFlo) → DFlo
DFloRPlus: (DFlo,DFlo,SInt) → DFlo
DFloRMinus: (DFlo,DFlo,SInt) → DFlo
DFloRTimes: (DFlo,DFlo,SInt) → DFlo
DFloRTimesPlus: (DFlo,DFlo,DFlo,SInt) → DFlo
DFloRDivide: (DFlo,DFlo,SInt) → DFlo
DFloDissemble: (DFlo) → (SInt,SInt,Word,Word)
DFloAssemble: (SInt,SInt,Word,Word) → DFlo
DFloRound: (DFlo) → BInt
DFloTruncate: (DFlo) → BInt
DFloFraction: (DFlo) → DFlo

Table ?

Double precision floating-point built-in operations

12



3.5 Boolean Operations

Although the Java virtual machine defines a boolean type, it only provides very limited
support for it. There are no Java virtual machine instructions solely dedicated to operations
on boolean values. Instead, expressions in the Java programming language that operate on
boolean values are compiled to use values of the Java virtual machine int data type.

Type Bool contains the values ‘false’ and ‘true’. Values of this type are used to control
the sequence of program evaluation. In a C implementation the values can be represented
as the integers 0 and 1. In a Lisp implementation the values can be represented as Nil and
T.

FOAM instruction Description

BoolFalse: () → Bool
BoolTrue: () → Bool
BoolNot: (Bool) → Bool
BoolAnd: (Bool, Bool) → Bool
BoolOr: (Bool, Bool) → Bool
BoolEQ: (Bool, Bool) → Bool
BoolNE: (Bool, Bool) → Bool

Table ?

Boolean operations

BoolAnd and BoolOr are not conditional, that is both the arguments are evaluated in
every case.

3.6 Character

Character operations

Type Char contains letters, numerals and other text constituents. Char Data may need to be
converted to a native character set (e.g. EBCDIC) for an implementation. CharLower and
CharUpper convert the case of letters and do not modify other character values. CharOrd
converts a character to a small integer and CharNum does the reverse.

13



FOAM instruction Description

CharSpace: () → Char
CharNewline: () → Char
CharTab: () → Char
CharMin: () → Char
CharMax: () → Char
CharIsDigit: (Char) → Bool
CharIsLetter: (Char) → Bool
CharEQ: (Char,Char) → Bool
CharNE: (Char,Char) → Bool
CharLT: (Char,Char) → Bool
CharLE: (Char,Char) → Bool
CharLower: (Char) → Char
CharUpper: (Char) → Char
CharOrd: (Char) → SInt
CharNum: (SInt) → Char

Table ?

Character built-in operations

3.7 Reference Types

The reference types of the FOAM are listed below. They are categorized as reference types
because they are not directly supported by modern architectures like primitive types.

1. BInt Represented as a 32-bit pointer. Implemented in /aldor/lib/libfoam/links/bigint.{h,c}
as :

typedef struct bint {

Bool isNeg; /* Sign of number. Is it negative? */

Length placea; /* No. of slots allocated for placev */

Length placec; /* No. of slots used in placev */

BIntS placev[NARY]; /* Digits in radix representation */

} *BInt;

Values of BInt are “demoted” to primitive values for efficiency if the size permits and
recast back to their BInt representation after the computation using the following
functions

#define BIntToInt(b) ((IInt) UnImmed(ptrToLong(b)))

#define IntToBInt(n) ((BInt) ptrFrLong(MkImmed(n)))

14



• /aldor/lib/libfoam/links/foam i.{h,c} implements a BInt library for the C back-
end.

• does Lisp and Scheme back-ends already have an implicit BInt?

2. Arr Represented as a 32-bit pointer.

3. Rec Represented as a 32-bit pointer.

4. Env Represented as a 32-bit pointer.

5. Prog Represented as a 32-bit pointer.

6. Clos Represented as a 32-bit pointer.

7. Ptr Represented as a 32-bit pointer.

8. NOp ???

3.8 Reference Values

3.9 Built-In Operations on Reference Types

Big Integer

Type BInt is used to represent integers which may be arbitrarily large. The operations on
BInt require dynamic memory allocation and garbage collection. BIntIsSmall tests whether
a value could be represented as a SInt. Operations have the same meaning as for SInt but
will never overflow.

15



FOAM instruction Description

BInt0: () → BInt
BInt1: () → BInt
BIntIsZero: (BInt) → Bool
BIntIsNeg: (BInt) → Bool
BIntIsPos: (BInt) → Bool
BIntIsEven: (BInt) → Bool
BIntIsOdd: (BInt) → Bool
BIntIsSingle: (BInt) → Bool
BIntEQ: (BInt, BInt) → Bool
BIntNE: (BInt, BInt) → Bool
BIntLT: (BInt, BInt) → Bool
BIntLE: (BInt, BInt) → Bool
BIntNegate: (BInt) → BInt
BIntPrev: (BInt) → BInt
BIntNext: (BInt) → BInt
BIntPlus: (BInt, BInt) → BInt
BIntMinus: (BInt, BInt) → BInt
BIntTimes: (BInt, BInt) → BInt
BIntTimesPlus: (BInt, BInt, BInt) → BInt
BIntMod: (BInt, BInt) → BInt
BIntQuo: (BInt, BInt) → BInt
BIntRem: (BInt, BInt) → BInt
BIntDivide: (BInt, BInt) → (BInt, BInt)
BIntGcd: (BInt, BInt) → BInt
BIntSIPower: (BInt, SInt) → BInt
BIntBIPower: (BInt, BInt) → BInt
BIntLength: (BInt) → SBInt
-BIntShift: (BInt, SBInt) → BInt
+BIntShiftUp:
+BIntShiftDn:
+BIntShiftRem:
BIntBit: (BInt, SInt) → Bool

Table ?

Big integer built-in operations

16



Ptr

PtrNil: () → Ptr
PtrIsNil: (Ptr) → Bool
PtrEQ: (Ptr, Ptr) → Bool
PtrNE: (Ptr, Ptr) → Bool

3.10 Generic Types

The generic types of the FOAM are listed below. They are categorized as generic types
because a variable declared to be of a generic type can take on either primitive or reference
values subject to some constraints.

Word : Single precision arbitrary: Ptr, Char, Bool, Byte, HInt, SInt, SFlo.
Arb: Arbitrary value: Word, DFlo.

Nil :

3.11 Generic Values

There is no specific value set associated with either of the generic types Word or Arb. Nil is
the distinguished value of type Nil. It represents the “nothing” value. The Type Promotion
and Casting section below will discuss interpreting the value of a variable declared to be of
generic type.

Word

FOAM instruction Description

+WordTimesDouble
+WordDivideDouble
+WordPlusStep
+WordTimesStep

Table ?

Word built-in operations.

17



3.12 Type Promotion and Casting

A type conversion is an operation which changes a value from one type to a value of another
type to which the original value would not otherwise belong.

In Aldor, primitive type conversion is accomplished with the pretend conversion oper-
ation. Most type conversions are performed by functions. By convention, type conversion
is most often performed by a coerce function, exported by either the source type or the
destination type.

Bool can be converted to Byte. Byte, Bool can be converted to HInt. HInt, Byte, Bool
can be converted to SInt. Word can be converted to and from Ptr, Char, Bool, Byte, HInt,
SInt, SFlo. Arb can be any primitive value (Word or DFlo). ...

FOAM instruction Description

SFloToDFlo: (SFlo) → DFlo
DFloToSFlo: (DFlo) → SFlo
ByteToSInt: (Byte) → SInt
SIntToByte: (SInt) → Byte
HIntToSInt: (HInt) → SInt
SIntToHInt: (SInt) → HInt
SIntToBInt: (SInt) → BInt
BIntToSInt: (BInt) → SInt
SIntToSFlo: (SInt) → SFlo
SIntToDFlo: (SInt) → DFlo
BIntToSFlo: (BInt) → SFlo
BIntToDFlo: (BInt) → DFlo
PtrToSInt: (Ptr) → SInt
SIntToPtr: (SInt) → Ptr
ArrToSFlo: (Arr) → SFlo
ArrToDFlo: (Arr) → DFlo
ArrToSInt: (Arr) → SInt
ArrToBInt: (Arr) → BInt

Table

Casting the Promotion

18



DFlo

Byte

BInt

SFlo

HIntPtr

SInt

Arr

3.13 Additional Built-in Operations

Text operations

FormatXxx takes a value of type Xxx, a character array and an integer index. The operation
formats the value into the character array starting at the position given by the integer. The
result is the number of characters placed in the array.

ScanXxx is the opposite of FormatXxx. It produces a value of type Xxx from the contents
of the character array. The SInt argument is the index of the array element to start at and
the SInt return value is the index of the first unscanned array element following.

FormatSFlo: (SFlo,Arr,SInt) → SInt
FormatDFlo: (DFlo,Arr,SInt) → SInt
FormatSInt: (SInt,Arr,SInt) → SInt
FormatBInt: (BInt,Arr,SInt) → SInt

ScanSFlo: (Arr, SInt) → (SFlo, SInt)
ScanDFlo: (Arr, SInt) → (DFlo, SInt)
ScanSInt: (Arr, SInt) → (SInt, SInt)
ScanBInt: (Arr, SInt) → (BInt, SInt)

PlatformRTE: () → SInt
PlatformOS: () → SInt
Halt: (SInt) → Nil

19



BInt?

4 The FOAM Instruction Set.

Values

Lexical Environment Levels

5 Grammar

6 The Semantics of FOAM Programs

7 The FOAM and the IEEE 754 Standard

Summarize relavent information about the IEEE 754 standard and develop the context in
terms of the AM.

7.1 IEEE 754 Rounding Modes

The FOAM fully supports all of the rounding modes mandated by the IEEE 754 standard.
The rounding modes of the AM are represented through the interface provided by the fol-
lowing built-in operations.

Rounding Mode SInt value
RoundZero 0
RoundNearest 1
RoundUp 2
RoundDown 3
RoundDontCare 4

Table

Casting the Promotion

20



The RoundDontCare rounding mode is not part of the IEEE 754 standard. It allows for
the faster execution of rounding mode sensitive operations, saving a rounding mode change
where appropriate. Currently the result of the rounding mode insensitive operation

SF loP lus(SF lo, SF lo) → SF lo

is equivalent to its rounding mode sensitive counterpart under mode RoundDontCare

SF loRP lus(SF lo, SF lo, RoundDontCare() → SInt) → SF lo.

Likewise for all other senstive SFlo built-in operations and DFlo built-in operations to their
rounding mode insensitive counterparts.

The rounding mode sensitive operations of the FOAM are listed below. The desired
rounding mode is passed into each using the interface built-in functions defined above. There
are no other rounding mode sensitive operations in the FOAM. Currently the rounding mode
functionality is explicitely coupled with arithmetic instructions and is never alone.

Type Rounding Mode Sensitive Operation
SFlo SF loRP lus (SF lo, SF lo, SInt) → DFlo

SF loRMinus (SF lo, SF lo, SInt) → DFlo

SF loRT imes (SF lo, SF lo, SInt) → DFlo

SF loRT imesP lus (SF lo, SF lo, SF lo, SInt) → DFlo

SF loRDivide (SF lo, SF lo, SInt) → DFlo

SF loRound (SF lo) → BInt∗
DFlo DFloRP lus (DFlo, DF lo, SInt) → DFlo

DF loRMinus (DFlo, DF lo, SInt) → DFlo

DF loRT imes (DFlo, DF lo, SInt) → DFlo

DF loRT imesP lus (DFlo, DF lo, DF lo, SInt) → DFlo

DF loRDivide (DFlo, DF lo, SInt) → DFlo

DF loRound (DFlo) → BInt∗

Table ?

The rounding mode sensitive operations of the FOAM.
∗ BInt can be cast directly or indirectly to and from every other integral primitive data type supported by the FOAM.

See Appendix ? for more information on the implementation of rounding modes in the
FOAM.

7.2 IEEE 754 Exceptions

How are exceptions handled in the FOAM? trap? signal? Does the FOAM support signalling
floating point comparisons? Comment on these issues.

21



7.3 IEEE 754 Extended Value Set Formats

Does the FOAM support the single-extended abd double-extended floating-point value set
formats of IEEE 754?

8 Examples

9 Appendix A

Below is a partial tour of the source code.

• foam c.h , foam c.c

Run time support for the C version of the abstract machine. The operations in this
file provide an implementation of FOAM for use with C code. This file includes an
implemetation of the built-in operations described in Section ?

• foam cfp.h , foam cfp.c

Currently, rounding mode changes are not implemented in hardware. They are imple-
mented using the functions

– FiSFlo fiSFloRId(FiSlfo, FiSInt) which uses functions fiSFloNext(...), fiSFloPrev(...)
to simulate rounding, and

– FiDFlo fiDFloRId(FiSlfo, FiSInt) which uses functions fiDFloNext(...), fiDFlo-
Prev(...) to simulate rounding

in the file aldor/src/foam c.{h,c}.

Platform dependent ieee support support is implemented in aldor/src/foam cfp.{h,c}.
Rounding support is implemented by the functions

– FiWord fiIeeeGetRoundingMode(FiWord s)

– FiWord fiIeeeSetRoundingMode(FiWord s).

The interpreter (aldor/src/fint.c) uses the implementation of rounding modes provided
by foam c.*, as illustrated by the following code excerpt. Built-in function fiSFloRPlus
is implemented with a call to function fiSFloRId (described above).aldor/src/foam cfp.{h,c}
appear to go unused.

...

22



case FOAM_BVal_SFloRPlus:

fintEval(&expr1);

fintEval(&expr2);

fintEval(&expr3);

retDataObj->fiSFlo =

fiSFloRPlus(expr1.fiSFlo,expr2.fiSFlo, expr3.fiSInt);

...

• The signitures for all FOAM instructions are located in a sequence of tables at the end
of foam.c.

• ...

10 Runtime System

• noOperation: () -¿ (); ++ Do nothing — used to clobber initialisation fns.

extendMake: DomainFun(DomainRep) -¿ Domain; ++ extendMake(fun) creates a
new lazy extend domain object; extendFill!: (DomainRep, Array Domain) -¿ (); ++
adds the extendee, extender pair to an extension domain lazyGetExport!: (Domain,
Hash, Hash) -¿ LazyImport; ++ creates a lazy function to retrieve the export lazy-
ForceImport: LazyImport-¿Value; ++ forces a get on the lazy value rtConstSIntFn:
SingleInteger-¿(()-¿SingleInteger); ++ Save on creating functions. rtAddStrings: (Ar-
ray Hash, Array String) -¿ (); ++ Adds more strings to the list of known exports
domainPrepare!: Domain -¿ (); ++ initializes a domain.

• * * A procedure stack frame consists in:

* - header (starting at bp, see below)

* - parameters, if any (starting at bp + PAR_OFFSET)

* - locals, if any (locValues points to (Loc 0))

* - fluids, if any (fluidValues points to (Fluid 0))

*

* * Stack Chaining

* In order to provide a virtually infinite stack, the interpreter stack is

* organized as a list of stack. Every element has size STACK_SIZE. The

* starting stack is <headStack>. If a stackFrameAlloc or stackAlloc operation

23



* needs X bytes and such amount is not available in the current stack, then

* a new stack of size STACK_SIZE is dynamically allocated and is chained to

* the previous stack.

24



A

ppendix A Builtin Values

BVal index builtin name signature
FOAM BVAL START=0 BoolFalse
1 BoolTrue
2 BoolNot
3 BoolAnd
4 BoolOr
5 BoolEQ
6 BoolNE

7 CharSpace
8 CharNewline
9 CharTab
10 CharMin
11 CharMax
12 CharIsDigit
13 CharIsLetter
14 CharEQ
15 CharNE
16 CharLT
17 CharLE
18 CharLower
19 CharUpper
20 CharOrd
21 CharNum

22 SFlo0
23 SFlo1
24 SFloMin
25 SFloMax
26 SFloEpsilon
27 SFloIsZero
28 SFloIsNeg
29 SFloIsPos
30 SFloEQ
31 SFloNE
32 SFloLT
33 SFloLE
34 SFloNegate
35 SFloPrev
36 SFloNext
37 SFloPlus
38 SFloMinus
39 SFloTimes
40 SFloTimesPlus
41 SFloDivide
42 SFloRPlus
43 SFloRMinus
44 SFloRTimes
45 SFloRTimesPlus
46 SFloRDivide
47 SFloDissemble
48 SFloAssembl

49 DFlo0
50 DFlo1
51 DFloMin
52 DFloMax
53 DFloEpsilon
54 DFloIsZero
55 DFloIsNeg
56 DFloIsPos
57 DFloEQ
58 DFloNE
59 DFloLT
60 DFloLE
61 DFloNegate
62 DFloPrev
63 DFloNext
64 DFloPlus
65 DFloMinus
66 DFloTimes
67 DFloTimesPlus
68 DFloDivide
69 DFloRPlus
70 DFloRMinus
71 DFloRTimes
72 DFloRTimesPlus
73 DFloRDivide
74 DFloDissemble
75 DFloAssemble

76 Byte0
77 Byte1
78 ByteMin
79 ByteMax

80 HInt0
81 HInt1
82 HIntMin
83 HIntMax

84 SInt0
85 SInt1
86 SIntMin
87 SIntMax
88 SIntIsZero
89 SIntIsNeg
90 SIntIsPos
91 SIntIsEven
92 SIntIsOdd
93 SIntEQ
94 SIntNE
95 SIntLT
96 SIntLE
97 SIntNegate
98 SIntPrev
99 SIntNext
100 SIntPlus
101 SIntMinus
102 SIntTimes
103 SIntTimesPlus
104 SIntMod
105 SIntQuo
106 SIntRem
107 SIntDivide
108 SIntGcd
109 SIntPlusMod
110 SIntMinusMod
111 SIntTimesMod
112 SIntTimesModInv
113 SIntLength
114 SIntShiftUp
115 SIntShiftDn
116 SIntBit
117 SIntNot
118 SIntAnd
119 SIntOr
120 SIntXOr

121 WordTimesDouble
122 WordDivideDouble
123 WordPlusStep
124 WordTimesStep

125 BInt0
126 BInt1
127 BIntIsZero
128 BIntIsNeg
129 BIntIsPos
130 BIntIsEven
131 BIntIsOdd
132 BIntIsSingle
133 BIntEQ
134 BIntNE
135 BIntLT
136 BIntLE
137 BIntNegate
138 BIntPrev
139 BIntNext
140 BIntPlus
141 BIntMinus
142 BIntTimes
143 BIntTimesPlus
144 BIntMod
145 BIntQuo
146 BIntRem
147 BIntDivide
148 BIntGcd
149 BIntSIPower
150 BIntBIPower
151 BIntLength
152 BIntShiftUp
153 BIntShiftDn
154 BIntShiftRem
155 BIntBit

156 PtrNil
157 PtrIsNil
158 PtrEQ
159 PtrNE

160 FormatSFlo
161 FormatDFlo
162 FormatSInt
163 FormatBInt

164 ScanSFlo
165 ScanDFlo
166 ScanSInt
167 ScanBInt

168 SFloToDFlo
169 DFloToSFlo
170 ByteToSInt
171 SIntToByte
172 HIntToSInt
173 SIntToHInt
174 SIntToBInt
175 BIntToSInt
176 SIntToSFlo
177 SIntToDFlo
178 BIntToSFlo
179 BIntToDFlo
180 PtrToSInt
181 SIntToPtr

182 ArrToSFlo
183 ArrToDFlo
184 ArrToSInt
185 ArrToBInt

186 PlatformRTE
187 PlatformOS
188 Halt

189 RoundZero
190 RoundNearest
191 RoundUp
192 RoundDown
193 RoundDontCare

194 SFloTruncate
195 SFloFraction
196 SFloRound

197 DFloTruncate
198 DFloFraction
199 DFloRound

FOAM BVAL LIMIT

25


