The Aldor-- language

Simon Thompson and Leonid Timochouk
Computing Laboratory, University of Kent
Canterbury, CT2 7NF, UK

{s.j.thompson,l.a.timochouk}@ukc.ac.uk

Abstract

This paper introduces the Aldor-- language, which is a functional programming language with
dependent types and a powerful, type-based, overloading mechanism. The language is built on a subset
of Aldor, the ‘library compiler’ language for the Axiom computer algebra system. Aldor-- is designed
with the intention of incorporating logical reasoning into computer algebra computations.

The paper contains a formal account of the semantics and type system of Aldor--; a general discus-
sion of overloading and how the overloading in Aldor-- fits into the general scheme; examples of logic
within Aldor-- and notes on the implementation of the system.

1 Introduction

Aldor-- is a dependently-typed functional programming language, which is based on a subset of Aldor
[16]. Aldor is a programming language designed to support program development for symbolic mathe-
matics, and was used as the library compiler for the Axiom computer algebra system [8].

Aldor-- embodies an approach to integrating computer algebra and logical reasoning which rests on the
formulas-as-types principle, sometimes called the Curry-Howard isomorphism [14], under which logical
formulas are represented as types in a system of dependent types.

Aldor and Axiom have dependent types but, as was argued in earlier papers [11, 15], because there
is no evaluation within the type-checker it is not possible to see the Aldor types as providing a faithful
representation of logical assertions. A number of other implementations of dependently-typed systems
already exist, including Coq [13], Alfa [1] and the Lego proof assistant [10]. The work reported here is
novel in two respects.

e The logic is embedded in a system which is intended to support symbolic mathematics, rather than
a system explicitly designed to aid the construction of type-theoretic proofs.

e Mathematical practice makes widespread use of overloading, and for this reason Aldor was designed
to incorporate the overloading of identifiers in as freewheeling as possible a form. This has particular
consequences for a system of dependent types in which type-checking and evaluation are tightly
coupled.

This paper describes the syntax, semantics and type system of Aldor--. We use a Haskell [7] notation
for the syntax, and we describe four principal semantic meta-types, also reflected in the syntax of the
language.

Manifest Types. Examples of these include base types, such as Booleans, numbers and strings; function,
record and union types; abstract data types and categories, and TypeT, the type of all types.

Manifest Values. These include values from the manifest types, and indeed these types themselves, which
belong to the type TypeT.

Expressions. Expressions are entities which can be evaluated to yield manifest values. Manifest values
may, of course, be manifest types.

Functional Blocks. These blocks represent the hierarchical definition structure of the language. They can
also be thought of as closures, combining an expression with a context which gives values to free
variables in that expression.

Central to the explanation of the semantics of Aldor-- is the concept of reduction. Reduction can be
applied to objects from any of the Aldor-- meta-types. The functional semantics of Aldor-- involves -
reduction of function applications and ¢-reduction of defined identifiers. Reductions can be classified as
being of two sorts.

Evaluation. If anexpression or a functional block can be reduced to a value, this is called (full) evaluation.
Normalisation. All other cases are known as normalisation or partial evaluation.

For example, if no value for x is available in the current context, then x+3 is normalised to itself. If, on the
other hand, x is bound to 4, then x+3 evaluates to 7.

The remainder of the paper is as follows. We first present a discussion of overloading in general, as
a context for the overloading in Aldor--; this is followed by an introduction to the syntax of Aldor-- and
then by an overview of overloading in Aldor--. Section 5 contains a formal account of reduction in the
language, and Section 6 formally describes the type system of Aldor--. Section 7 contains an overview of
the implementation of the system, and Section 8 covers a number of illustrative examples.

2 Overloading: asurvey

This section surveys the topic of overloading in programming languages in order to give a context to our
later discussion of the central rdle that overloading plays in Aldor--.
An identifier is overloaded (within a particular scope) if it denotes more than one object simultaneously.
Overloading is common in mathematics, where the same multiplication symbol might be used for
multiplication of two scalars, multiplication of a two vectors and multiplication of a vector by a scalar. In
each case here the symbol is used with the same “arity’, as it denotes a binary operation in each case.
Overloaded symbols need not have the same arity: the minus sign, -’ is commonly used both for unary
minus, which changes the sign of a number (or indeed a vector), and also for binary subtraction.
Overloading is not confined to operators. Function names, and indeed other names, can also be over-
loaded. For instance, it is common in object-oriented languages to overload the constructors of a class,
which are given the same name as the class itself. A constructor with no arguments might set default
values for attributes, whereas explicit parameters can be used to give attributes particular values on object
creation.

Why overloading?

What is the rationale for overloading a name? Two separate justifications emerge.

The first is that despite the fact that modern programming languages offer an effectively unlimited
collection of possible names, the choice of names — especially if they are to have mnemonic value — is
substantially smaller. It makes perfect sense that the size of an arbitrary data structure should be returned
by size, for instance. Without the symbols afforded by full Unicode, there is a particular paucity of
possible operators and constants in the ASCII character set; hence the decision that a unit element of
whatever sort is to be denoted 1.

Overloading of this kind is syntactic sugar, which makes a programmer more effective by making
programs and libraries easier to read and write. It would be possible to replace all overloaded names; in
the case of size by defining instead the functions sizeBlah, where Blah is the name of the data type in
question.

The second rationale is that overloading provides a form (in fact various forms) of genericity: it is
possible to use a function without knowing the type at which it is being applied. Continuing the size
example, it is possible to find the total size of a list of data structures by summing the individual sizes:

totalSize = sum (map size)
Pushing the overloading one stage further we could in fact call the function that we are defining size too
size = sum (map size)

The code here will work irrespective of the particular data structures in the list (so long as the host pro-
gramming language has a sufficiently liberal type discipline).

M echanisms

Here we survey the various mechanisms for defining overloaded identifiers.

Finitary overloading

A program is a finite artifact, and as such can only contain a finite number of definitions. A fortiori, there-
fore, it can only contain a finite number of definitions for any particular identifier. In a momomprphic
language, this is the whole story, except perhaps for built-ins like equality. In languages with polymor-
phism the situation is more complex.

In Haskell98 it is possible to declare identifiers whose overloaded definitions each cover a collection
of types: the size function for lists will employ the same code to measure the length of any type of list,
for instance.?

class Size where
size :: a -> Integer

instance Size [a] where
size [] =0
size (_:xs) = 1 + size xs
In this case the definition itself is still finitary — indeed the same code covers all lists — but it can be applied

at an infinite number of different types. On the other hand, it can only be used at those data types for
which there is an explicit instance declaration, and so cannot cover all possible data types.

1The c1ass declaration introduces a type class, which is specified by a siganture; in other words a class declaration defines
an interface. The instance declarations give implementations of that interface.

3

Infinitary overloading: varieties of generic programming

Suppose that you would like to define a function that will work over all types, returning (say) the size of
its argument, measured in some way. It is clear that this cannot use the same code at every type, and so
it is necessary to define the function by cases over the different types. Such a type case construction can
be realized in a number of different ways, but in essence a type has to be passed to the function as an
argument, either explicitly or implicitly, and either structurally or by name.

Types can be represented in the language by a type Type. If the language has a fixed repertoire of type
constructors (such as tuples, lists and function spaces), then it is possible to give an exhaustive description
of the types, as elements of a data type. In pseudo Haskell the tuple type (Int -> Int,Bool,Int) might
be represented by the value

Tuple [(FunSpace IntType IntType), BoolType, IntType]

A function such as size can then examine the type representation(s) of its argument(s) within its definition.
In the case of this tuple, we have

size (Tuple [(FunSpace IntType IntType), BoolType, IntTypel)
= size (FunSpace IntType IntType) . proj 3 1 +++

size (BoolType) . proj 3 2 +++

size IntType . proj 3 3

where

f+++g=\x >fx+gx

and proj n m is the function which projects from an n-tuple to its mth component. This approach goes
by the general name of intensional polymorphism [5]. Research issues in this area centre upon finding
efficient implementations of such intensionality, and, in turn, its use in finding optimal implementations
of language features according to the particular data representations for language primitives.

Intensional polymprphism can be extended to cover generative type definitions, that is type defini-
tions that generate new types. With such a facility it is impossible directly to enumerate the types of the
langauge: how can one predict the names given to the types and to the type constructors, for example?

On the other hand, it is possible to describe in a finitary way all the possible structural definitions: data
types are given by the fixed points of functions over types built from sum, product, function space and
other type constructors. A definition of a function like size can be given indirectly along the following
lines:

e when given an element of a product type, find the size of the two components and add them
together;

¢ when given an element of a sum type, then apply whichever of the summand functions is appropriate.

These mechanisms underly the so-called ‘polytypic’ languages like PolyP and Generic Haskell [6].

As the informal description of the size algorithm might suggest, the functions of Generic Haskell
are uniform in the construction of the type. In Strafunski [9] such general behaviour can be combined
with “ad hoc’ definitions at particular types, giving a very elegant and powerful platform for type-directed
programming.

What is not overloading (part 1)?
Overloading, non-deter minism and multiple-valued programs

It would be possible to build a programming language in which multiple definitions of an identifier at the
same type were permitted. For example, a language might allow multiple definitions (of constants) thus:

bar :: Integer
bar = 37
bar = 42

One can view the evaluation of expressions in this language in (at least) two different ways.

1. The language is non-deterministic, and so evaluating bar+bar could give one of three results, 74,
79 and 84.

2. The language is set-valued, and so the evaluation of bar+bar gives the set {74,79,84}, or bag-
valued, giving {{74,79,79,84}}.

These approaches are perfectly legitimiate, but they are outside what we understand by overloading. Under
our approach, it is expected that every expression will have a unique value.

Resolving overloading

If an expression containing overloaded identifiers is required to have a unique value, how can this be
achieved? It is not difficult to see that the problem of deciding whether an arbitrary expression has a
unique value is formally undecidable (see [3], for instance, for the background to questions like this).

A sufficient condition to ensure that an expression is single-valued is that each overloaded identifier in
the expression can in fact be bound to only one definition for reasons of typing. A simple example is given

by

foo :: Integer
foo = 42

foo :: String
foo = "Forty two"

Consider some examples

exprl :: Integer

exprl = foo + 37

expr2 :: Integer

expr2 = length foo + 37

expr3 :: Integer

expr3 = if foo==foo then length foo else foo

In the expressions expr1 and expr?2 it is plain that foo is used at a single type.

In expr3 foo is used four times: the third use is at type String and the fourth at Integer. The first
two occurrences could be at either type, assuming that == denotes an overloaded equality. Despite the fact
that foo==foo would evaluate to True irrespective of the type of foo, expr3 would be rejected on a type-
based resolution of overloading, since it is impossible to assign a unique type to the first two occurrences
of foo or to the equality symbol, ==.

Two types of ambiguity?

How, in general, are ambiguous references to be resolved? There are two mechanisms at work.
The first mechanism resolves overloading in a bottom-up manner. A function identifier is resolved by
consulting the types of its arguments. This permits certain sorts of overloading, such as

e using the “+’ symbol for addition over both integers and real numbers. In this case, ‘+’ will have the
types

Integer -> Integer -> Integer
Float —> Float —> Float

e Using the ‘-’ symbol for both binary subtraction and unary negation over integers.® In this case, ‘-’
will have the types

Integer -> Integer —> Integer
Integer -> Integer

Bottom-up resolution characterises the C++ overloading mechanism?; on the other hand, Ada, for instance,
allows a more general form of overloading whereby the context is used in a top-down resolution. Cases in
which top-down resolution is necessary include

e overloaded literals, like 1 and overloaded constants such as foo above. These uses can only be
resolved by viewing the context in which they are used.

e In general, cases in which function uses are resolved by their return types require context. Use of a
function such as

parse :: String -> Integer
parse :: String -> Boolean

in parse str is unresolved, and the context of the application has to be examined. Resolution can
require arbitrary backup through the expression tree, since the immediately enclosing operator may
be overloaded to accept either an integer or a Boolean.

2With apologies to William Empson.

3The partial applications of Haskell can cause a problem here. If £ has types Integer -> Integer -> Integer and
Integer —> Integer thenitis not clear what type £ 42 has: it could be either Integer -> Integer and Integer.

“4For a discussion of the rationale behind this decision and other C++ design decisions, see [12].

What is not overloading (part 2)?
Parametric polymorphism isnot overloading

In a language like Pascal it is possible to define a number of different types of linked list, which differ only
according to the type of their elements, but which share the same structure. A Pascal programmer is forced
to (re-)define a function to return the length of a list for each list type, despite the fact that essentially the
same program works at each type.

Langauges such as Haskell [7], which conform to the Hindley-Milner type discipline, allow the defi-
nition of parametric types

data List t = Nil | Cons t (List t)

where t is a type parameter. It is then possible to define a length function which works over all types of
lists

length :: List t -> Integer (length)
length Nil =0
length (Cons x xs) = 1 + length xs

The length function can be applied to lists of elements of any type, but it is important to observe that
the identifier 1length denotes a single object, which can be applied at any list type. In particular, there
is no ambiguity about the effect of applying length: the code (length) will be used at every list type.
The definition here is an example of parametric polymorphism: the polymorphism (‘many shapes’) of the
function length are given by the fact that the type t is a parameter to the definition of the function.

Overloading and coercion

Closely related to overloading is coercion, that is the implicit conversion of a value in one type to another
type. The canonical example of this is the conversion of integers to floating point numbers. Suppose 1 is
a literal integer and 1.0 a literal float; what will be the value of the expression that follows?

1+1.0

If + is overloaded to be both an integer and a floating point operator, then 1 + 1.0 will be ill-typed, unless
either

e the integer 1 is coerced to the float 1.0, or
e the operator + is also overloaded to have type
Int -> Float -> Float

To ensure full generality in the second case then + should also be overloaded to type Float -> Int ->
Float, thus further proliferating definitions. It is in the light of this that coercion is often justified, but
coercion adds substantial complications to an existing language.

For instance, it gives a problem of coherence. Suppose that we are asked for the floating point equiva-
lent of the addition 1+3, there are two alternatives:

¢ the numbers are added as integers and the resulting integer is coerced to be a float;

¢ the numbers are coerced to being floats, and are then added as such.

The coherence criterion requires that the two mechanisms give the same result. In many situations this
will not happer: consider the addition of N and 1-N where N is the maximum storable integer. The first
mechanism will five the answer 1; it is by no means clear that the second will do the same.

7

Bounded ad hoc polymor phism is not overloading

Subclassing in object-oriented programs allows the same identifier to be bound to different definitions
in different subclasses. For instance, a class of two-dimensional geometrical shapes may have an area
method which is redefined in subclasses of triangles, squares and so forth. When the area method is
invoked on a shape S say, then the particular code used will depend upon the (dynamic) class to which S
belongs; this mechanism is called dynamic despatch.

The method area is polymorphic; it can be applied to all subclasses of a given class (hence the
’bounded’), and it has different definitions at different subclasses (hence ’ad hoc”).

I nter face-based and freeform overloading

Different overloading disciplines allows overloading in different ways. Haskell98 type classes specify
which identifiers can be overloaded by presenting them in signatures. These signatures are implemented
by instances which insantiate the overloaded identifiers at the instance type. In a similar way, OO methods
redefined within subclasses are required to adhere to the signature of the superclass method.

By contrast, other languages do not require any uniformity of this sort in the overloading of identifiers.
The work presented in this paper is of this kind.

Related work

Castagna and Chen [2] introduce a system combining overloading and dependent types. Their overload-
ing is required to be resolved bottom up, by analysing the types of arguments passed to functions. Our
overloading is resolved in a more general manner.

3 Aldor-- syntax

To begin with, we present the abstract synatx of Aldor--. Examples of the concrete syntax are given at the
end of this section.

The syntax of Aldor-- is presented as a collection of Haskell [7] data and type definitions in Figure
1.

3.1 Aldor-- programs

An Aldor-- program, AldorProgram, is a top-level functional block given by the Haskell type FB. There
are four kinds of FB:

SimpleFB e: A simple functional block is given by an Aldor-- expression, e, of type Expr.

NestedFB dt fb: A ‘nested’ FB contains a definition table, dt, of type DefTable, and an inner func-
tional block, fb.

FParmPB dt: The third kind of FB is used for technical reasons to ‘wrap’ a definition table as used in dec-
larations of function, record and union types, FunctionT, RecordT and UnionT. This is explained
in more detail below in Section 3.5.

VoidFB: This is a ‘placeholder’ functional block, used, for example, in a declaration of the type of an
object not containing an associated definition body.

type AldorProgram = FB type QName = [String]

data FB = data Value
SimpleFB Expr TypeVal Type
| NestedFB DefTable FB | BooleanVal Bool
| FParmFB DTE | IntegerVal Integer
| VoidFB | FloatVal Double
|
|
|

StringVal String
LambdaVal Type FB
BuiltInOp String Type
([Valuel -> Value)
RecordVal [Valuel
UnionVal Expr Value

data DefTable =
DefTable [DTE] [QNamel

data DTE = DTE String FB Expr

data Expr = ADT_Val Type Value
Literal Value TrivVal
| Identifier QName
| AndList [FB] data Type =
| OrList [FB] TrivT
| IfThenElse FB FB FB | ExitT
| FunctionCall FB [FB] | TypeT
| RecordCtor [FB] | BooleanT
| UnionCtor Expr FB | IntegerT
| UnionCase FB Expr | FloatT
| RestrictType FB FB | StringT
| ConvertTo FB FB | FunctionT [FB] FB
| Add1 FB | BuiltInT [Typel Type
| Add2 FB FB | RecordT [FB]
| Withi FB | UnionT [FB]
| With2 FB FB | ADT FB DefTable
| VoidExpr | CategoryT DefTable

Figure 1: The Syntax of Aldor--

3.2 Definitions and definition tables

An Aldor-- definition associates with a name

e an expression which denotes the value given to that name, and

e the type of that value.
A single definition is represented by an object of the DTE type, such as
DTE n fb e

The expression e here evaluates to the type of the value given to the name n by the functional block £b.
Because of the intimate relation between types and values in Aldor--, Aldor-- types are given by a subset
of Aldor-- expressions, and so a type is, in general, given by an expression rather than a manifest type.
Types and type-valued expressions are described in more detail in Sections 3.3 and 3.5.

A definition table is a collection of definitions, represented as a list of DTES together with a list of names
of imported domains. The names can, in general, be fully qualified, and are therefore represented by the
type QName = [String]. The import semantics is defined in Section ??. Definition tables are themselves
represented by the Haskell type DefTable.

3.3 Expressions

The Haskell type Expr lies at the heart of the program structure of Aldor--. Expressions are entities which
can be evaluated. The elements of the type Expr are as follows.

Literal v: where v isa Value as explained below.
Identifier q: where qis a qualified name, given by a non-empty list of strings.

In the remaining cases, the components of the expressions are functional blocks or lists of functional
blocks, unless explicitly stated otherwise.

AndList fbs: where the elements of fbs evaluate to Booleans; the expression denotes the conjunction
of these Boolean values.

OrList fbs: where the elements of £bs evaluate to Booleans; the expression denotes the disjunction of
these Boolean values.

IfThenElse ¢ t f: the first component, c, denotes a Boolean, and t and £ denote objects whose types
are the same. The result denotes the value of t or £, according to the result returned by c.

FunctionCall f as: usually, £ denotes a function and as a list of function arguments; in this case the
expression denotes the function applied to the arguments.

The same notation is used for record or union field access; in this case £ denotes a record or union
object, and as is a singleton list containing a record/union field name as an Identifier enclosed
ina SimpleFB.

RecordCtor fbs: the list £bs denotes a list of record field values.
UnionCtor e fb: the expression e denotes a field (variant) name, and £b denotes the value of that field.

UnionCase fb e: this denotes the Boolean result of testing whether the union object £b is of the variant
given by the expression e.

RestrictType fb t: as Aldor-- evaluation is multiple-valued, in general (see Section 4) this expression
is used to restrict the set of results of £b to those belonging to a particular type dentoted by t.

ConvertTo fb t: isa controlled coercion of £b to the type denoted by t. In contrast to RestrictType,
which drops non-conforming values from the result set but preseves the type of those that remain,
ConvertTo drops non-convertible results of £b and changes the type of the rest.

Add1 fb: builds an ADT from the set of bindings contained in £b.

Add2 fb1l £b2: builds an ADT by extending the ADT built from £b1 by adding the bindings contained in
fb2.

Withl fb: builds a CategoryT from the set of bindings contained in £b.

With2 fbl fb2: builds a CategoryT by extending the category built from £b1 by adding the bindings
contained in £b2.

VoidExpr: denotes a void expression that evalutes to TrivVal. It is used for technical purposes.

10

The constructors

Literal, Identifier, FunctionCall, IfThenElse, RestrictType, ConvertTo, Addl,
Add2, Withl, With2

are type-forming. This means that they can be used to construct expressions which can appear in a context
where a type is required. For example, they can be used as type expressions in DTES and in the return type
of a FunctionT type. The constructors

RecordCtor, UnionCtor, RestrictType, ConvertTo

are callable. That is, they can be used to form expressions that can appear in the first argument of a
FunctionCall expression.

3.4 Values

The type Value describes the syntax of manifest values in Aldor--. Manifest values are lifted to the ex-
pression type, Expr, by the constructor Literal. Manifest types are included in Value by the constructor
TypeVal. Booleans, integers, floats and strings are given by the corresponding constructors, BooleanVal
etc. We now explain the other constructors in more detail.

LambdaVal t fb: denotes a user-defined function object. The Type component t will be a FunctionT
type, as described in the following section. The functional block £b denotes the body of the function.

BuiltInOp str t fVal: denotes a built-in function, whose name is str, whose type is t and whose
value is given by the Haskell function fval.

RecordVal vs: isa manifest record, built from the list of values vs.
UnionVal i v: isa manifest union value, of variant given by the Identifier i and with content v.

The constructors LambdaVal, BuiltInOp, RecordVal and UnionVal are callable; that is they can be used
to construct the first argument of a FunctionCall expression.

ADT Val t v: thisis a value of the abstract data type t, where v gives the representation of the value in
the carrier type.

TrivVal: is the unique value of type TrivT, and also the result of evaluating VoidExpr.

3.5 Types

The Haskell data type Type describes the syntax of Aldor-- manifest types, which are embedded in the
manifest values by the TypeVal constructor, and in turn are embedded in Expr by the Literal constructor.
Types also occur directly as components of ADT Val, LambdaVal and BuiltInOp values.

TrivT is the trivial type, with the unique member TrivVal. It is also used to represent the proposition
‘true’ under the Curry-Howard isomorphism. The ExitT type is empty, and is identified with the propo-
sition ‘false’. TypeT is the type of all Aldor-- types; Booleans, integers, floats and strings are given by the
types BooleanT and so forth. We describe the other Type constructors in more detail.

FunctionT ps r: describes a (dependent) function type with parameters given by ps and return type by
r. It is assumed that the elements of ps are FParmPBs, each representing a single element of the
parameter list; r is a SimpleFB, encapsulating a type-forming expression.

11

BuiltInT ps r: describes the type of a built-in function; ps is the list of argument Types and r is the
result Type. Note that the types of built-in functions are not dependent, and are given by manifest
types rather than functional blocks (as is the case for FunctionT).

RecordT ps: describes a (dependent) record type, with fields and their types given by ps, with the same
constraint as the parameters of FunctionT.

UnionT ps: this is a union type, which is non-dependent in Aldor--. The parameter list ps shares the
same constraint as RecordT.

ADT fb defTable: constructs an abstract data type. The first argument, which must be type-valued,
provides the carrier type or representation of the ADT. The defTable is a DefTable that provides
a collection of operation signatures together with their implementation over the carrier type.

CategoryT defTable: constructs the category defined by the signature contained in the defTable.

4 Reduction: evaluation and normalisation

As we said in the introduction, we use the general term reduction for the process of computation over
Aldor-- terms. Reduction which results in an Aldor-- Value is called evaluation; otherwise it is known as
normalisation.

Reduction and type-checking in Aldor-- are closely related. Type expressions in definition table entries
(DTESs) need, in general, to be reduced by 5- and §-reduction before a definition body can be type-checked
against such an expression.

On the other hand, reduction may require some limited form of type-checking, not to resolve overload-
ing, but to resolve an ambiguity between function application and record/union field access in the syntax
of Aldor, which is inherited by Aldor-- since we reuse the Aldor parser in our system. In the concrete
syntax, function application is denoted thus fun(args), whereas field access is given by record.field;
both of these result in the same node in the abstract syntax tree: FunctionCall.

As we first noted in Section ??, it would be impossible to resolve Aldor-- overloading during the
process of reduction simply by type-checking components of redexes, since in many cases this would give
rise to a non-terminating sequence of reduction and type-checking operations. For instance, consider the
example

T: Type == if I >0 (1)
then Boolean
else Integer;
I: Integer == 1; (2)
I: T == true; (3)

In order to type-check definition (3) it is necessary to evaluate T, defined by (1). However, the body of
(1) uses the identifier I which is defined by both (2) and (3). If the overloading for I is to be resolved
by type-checking then the definitions of I given in both (2) and (3) will have to be type-checked, thus
forming a nonterminating cycle of operations. On the other hand, the example is perfectly legitimate
Aldor-- code, and is dealt with using set-valued reduction, as outlined in the remainder of this section.

12

4.1 Thereduction and type-checking environment

The reduction and type-checking environment (RTCE) consists of two parts: a collection of name bindings
together with the reduction stack. In Haskell:

type RTCE = (NameBinds , RedStack)

The type NameBinds was defined in Section ??, and RedStack is a sequence of reduction stack frames.
A stack frame associates function arguments with formal function parameters. Function parameters are
FParmFBs as in the FunctionT constructor introduced in Section 3.5. Function arguments will, in general,
be the results of previous reductions and are therefore represented by the RedRes data type.

type RedStack = [RedStackFrame]
type RedStackFrame = FiniteMap FB RedRes

Reduction results can take two forms:

data RedRes = FullRR NameBinds Value |
PartialRR NameBinds FB

A FullRRis the result of an evaluation to a value, whereas a PartialRR contains a functional block which
is the result of normalisation. Recall that we also use the term partial evaluation for normalisation, and
full evaluation for evaluation proper.

Both sorts of reduction results also contain a NameBinds object; this reflects the fact that in the pres-
ence of overloading the name bindings can be affected by the reduction process. The reduction rules in
Section 4.2 explain the details of this.

4.2 Reduction rules

The reduction operation is Aldor-- is set-valued, to accommodate multiple possible reduction results of
of objects containing overloaded identifiers. Thus, this operation in general produces a list of reduction
results, [RedRes]. The exceptions to this are DefTables and DTES: for DefTable the result is of type
[(NameBinds, DefTable)] and for DTE it is [(NameBinds, DTE)]; note that in these cases, the reduc-
tion results are multi-valued as well. More details of this are given in 4.2.2.

In general, reduction takes place in a context, of type RTCE as described above. The general form of a
reduction statement will be

context + before ~- after

In every case a modified version of the name bindings component of the context is returned as part of the
reduction result.

The reduction algorithm for an Aldor-- object t of the form Ctor ¢; ... ¢, in the context I' operates
as follows:

e Each of the structural components ¢; of t is reduced in the original context I, to yield a list of results
rS;.

e A cross-product xs of all the lists rs; to rs,, is constructed. The elements of zs are n-tuples of
individual reduction results for the components ¢; to c,,.

In particular, if some rs; is an empty list, then the product zs itself will be empty.

e For each tuple in zs, (z1,...,z,) say, the name bindings b; of each of its elements x; are extracted
and are intersected as described in Section ?7.

13

— If the intersection of the b;s, b say, is not well-formed (i.e. it fails to satisfy the predicate
wellBinds) then the tuple is not used further in the reduction.

— Otherwise, the final stage of top-level evaluation of the expression Ctor ¢; ... ¢, can be
performed on the tuple (z1,...,x,). The intended meaning of the constructor is applied to the
result components of x; to z,. For instance, in the case of AndList, the intended meaning is
the conjunction of a Boolean list.

— The result of this operation can be

« a failure: in our running example, if one of the z; is fully-evaluated to something other
than a Boolean;

« a fully-evaluated result: which will happen if (and normally only if) all the z; to x,, are
fully evaluated; however, in the case of AndList the result False can be obtained if at
least one of the z; is fully evaluated to False;

* a partially-evaluated result ensues otherwise. This will be built by applying the Ctor
contstructor to the normalised arguments z; to x,,.

— If the binding b is well-formed and the operation result R is not a failure, then the appropriate
RedRes object — either FullRR or PartialRR — is constructed from b and R.

e The overall reduction result is the list of RedRes objects constructed as above for all tuples in the
set xs.

In the following sections we give reduction rules for each of the syntactic meta-types of Aldor--. These
rules collectively define the reduction relation denoted by

[g

The reduction relation is overloaded to work over all the Aldor-- syntactic meta-types: FB, DefTable,
DTE, Expr, Value and Type as well as the semantic meta-type BindTarg of identifier binding targets, first
introduced in Section ??.

However, for the simplicity of presentation, we define the reduction relation ~» to be single-valued.
For a given Aldor-- object, its complete multi-valued reduction result in a given context is therefore the set
of all derivations due to ~» .

4.2.1 Functional blocks (FBS)

'Fe~ r ' fbo~ r

FB FB
' -+ SimpleFBe ~» r(1) I' - NestedFB_ fb ~~ r(2)
I' + dte ~ (b, dte’)
. 7 (FB?))
I' - FParmFBdte ~ (PartialRRb (FParmFB dte'))
(FBy)

I'Q(b,) - VoidFB ~» [PartialRR b VoidFB]

Note that in rule (F'B,) the original definition table in the NestedFB is not explicitly propagated into the
result; rather it was used through the context I in the reduction of fb to rs.°
The Haskell-style notation I'@(b,) is used for pattern matching components of a context I'.

SAnother possible reduction rule for a NestedFB is always to normalise it to another NestedFB, and thus preserve its
definition table. However, this preservation proves to be unnecessary in our implementation of the language.

14

4.2.2 DTEsand definition tables
Definition table entries;

'-e~ e T'F fb~ fr wellBindsb

DTFE
I' - DTEname fbe ~ (b,DTE name fb' ¢') ()
where
e = getExprer
fbl = getExpr fr
b = getBindser ® getBinds fr

Here the functions getExpr and getBinds extract the expression and the name bindings from an evalua-
tion result:

getExpr (FullRR _val) = SimpleFB (Literal val)
getExpr (PartialRR _ fb) = getExpr fb

getExpr (SimpleFB e) = e

getExpr (NestedFB innerFB) = getExpr innerFB
getExpr VoidFB = error

getExpr FParmFB _ = error

getBinds (FullRR binds) = binds

getBinds (PartialRR binds _)= binds

Note that in the above definition, the function getExpr is overloaded to work on both reduction results
and functional blocks.

In the following, we will also use the counter-part of getBinds which is called setBinds. It is an
overloaded function which modifies the name bindings of any object which contains them, e.g. on RTCE:

setBinds :: NameBindsa — «

Definition tables:

!
r F dy ~ (b,dy) b= @by, b
r l— dy ~ (bn,d') wellBinds b

[- DefTable[dy,...,d,| imports ~» (b,DefTable|d],...,d,] imports)

(DT)

4.2.3 Expressions

Literals:
Although an Aldor-- Literal just encapsulates a Value object, that object can be complex (e.g. TypeVal
(ADT ...)),so it may be further reducible:

''Fov~ r
I' F Literalv ~

~(Bui)

| dentifiers:
An identifier is reduced to the reduction results of its binding targets. Since our reduction relation ~»

15

is single-valued, we give here a reduction rule which uses a particular target . Before the indentifier in
question is reduced, the name bindings for it in the environment I" are reduced to ¢:

['Q(b,s) F t € lookupBinds (b,i@(Identifier))

(Eldent)

Conjunction and digunction:

First of all, note that these logical operations are treated as expressions in Aldor--, not as built-in functions,
because they can take a variable number of arguments. They also exhibit a kind of lazy semantics: e.g. the
result of AndList is False if at least one of the operands evaluates to False, even if other operands are
only partially-evaluated. However, if an operand of a logical expression is fully evaluated, it must evaluate
to a Boolean value, otherwise the whole expression fails to reduce:

r l_ fb1 ~ T

length fulls = length bools
fulls = [f | fQ(FullRR __) < — [ry,...,7]]
bools = [b|FullRR_ (BoolValb) < — [r1,...,7y]]

T F fb, ~ m

b = @(map getBinds [ry,...,7,])
wellBinds b
I' - AndList [fby,..., fb,] ~ evalAnd|[ry,...,7,]

(EConj)

where the function evalAnd is given by

evalAnd xs

| not conj = [FullRR b (BooleanVal False)]

| parts==[] = [FullRR b (BooleanVal True)]

| otherwise = [PartialRR b (SimpleFB (AndList (map getFB parts))) 1
where

parts = [part | part@(PartialRR _) <- [ri1,...,rn]]

conj and bools

The reduction rule for OrList has the dual definition.

Conditionals:
If the condition cond is fully evaluated to a boolean value, then the corresponding branch of the IfThenElse
expression is reduced. If the condition is only partially evaluated, then the branches are not reduced at all:

I' - cond ~» FullRRD (BooleanVal True) (setBindsbI') - then ~~ tr

Eon
I' + (IfThenElse cond then _) ~» tr (Econdt)

I' - cond ~» FullRRb (BooleanVal False) (setBindsb[I') b else ~ er

Eon
I' - (IfThenElse cond _else) ~» tr (Econat)

I' - cond ~ PartialRRbcfb (B)
I' - (IfThenElse cond then else) ~» PartialRR b (SimpleFB (IfThenElse cfbthen else)) Cond3

Function call:
The callable is reduced first. The result can be:

16

=

a (fully-evaluated) user-defined lambda object (LambdaVal);
. a (fully-evaluated) built-in function (BuiltInOp);

. a (fully-evaluated) record object (Recordval);

. a (partially-evaluated) record constructor expression (RecordCtor);

2

3

4. a (fully-evaluated) union object (UnionVal);

5

6. a (partially-evaluated) union constructor expression (UnionT);
7

. any other partially-evaluated result.

Note that in Aldor--, function applications (of user-defined lambda objects and of built-in functions) have
the same abstract syntax, namely FunctionCall, as record or union access operations. This makes re-
duction of FunctionCall expressions quite complex, especially in the last case listed above (7).

Consider application of user-defined lambda objects first. The actual arguments are all reduced and
pushed on the stack, after that the function body is reduced in the new environment:

I' F callable ~ FullRR by (LambdaVal (FunctionT [py,...,Dp,]) body)
r v a ~ nr

r - a, ~ r,

b = Qlbo, getBindsry, ..., getBindsr,], wellBindsb
I = pushArgs|(ry ... r,][p1 ... pa] T

I + body ~» br

FCall
I' - (FunctionCall callable [ay,. .., a,]) ~ br (FCalh)

Here the pushArgs function associates, on the reduction stack of I', the formal parameters py,...,p,
with the reduction results r4, . .., r, of the actual arguments a4, ..., a,. Note that the arity of the formal
parameters and the actual arguments must be the same:

pushArgs [ry ... 7] [p1 ... pu) TQ(b,s) = (b, s U {p1+—T1,...,Dn = Tn}) .

The reduction rule for a built-in function application is somewhat similar, but the difference is that a
run-time type-check of the actual arguments is performed in this case. The check only applies to those
arguments which are fully evaluated. If at least one of the arguments is not fully evalutaed, a built-in
function application reduces to a normal form. Also note that since bult-in functions in Aldor-- are not

17

recursive, they can be applied directly, without modifying the reduction stack:

I' + callable ~ FullRR by BIQ(BuiltInOp name (BuiltInT [t1,...,t,]) body)
r F a ~ M

r v a, ~ r,

b = by, getBindsry, ..., getBindsr,|, wellBindsb
conformsTo 71 1
conformsTor, t,

br = applyBI body [ri,...,1,]b

FCall
I' - (FunctionCall callable [ay,. .., a,]) ~ br (FCally)

Here the conformsTo function implements a “liberal” run-time type check. The check is facilitated by
the fact that the parameters of built-in functions always have simple manifest types, which can only be
BooleanT, IntegerT, FloatT or StringT. If the type of the left-hand side (the reduction result) cannot
easily be inferred, e.g. if the reduction result is a normal form, conformsTo assumes that the type con-
formance is satisfied. This reduction strategy of built-in functions can produce extraneous results, but the
idea behind the reduction and type-checking algorithm of Aldor-- is that such results will at some later
point be eliminated, otherwise an ambiguity will be detected. On the other hand, the stragegy of “liberal”
run-time type checks guarantees that no result will be lost unnecessarily:

conformsTo (FullRR _ (BooleanVal _)) BooleanT = True
conformsTo (FullRR _ (IntegerVal _)) IntegerT = True
conformsTo (FullRR _ (FloatVal _)) FloatT = True
conformsTo (FullRR _ (StringVal _)) StringT = True
conformsTo (FullRR _) - = False
conformsTo (PartialRR _ _) - = True
The applyBI function used above actually applies the body of a built-in function to the arguments [rq, ..., 7,],

if all of them are fully-evaluated. Otherwise, it produces a partially-evaluated result. Thus,

applyBI body [FullRR _vy, ...,FullRR v,] b = FullRRb (body vy ... vy,)

applyBI body [ry,...,r,] b = PartialRR b (SimpleFB (FuncionCall BI [rrToFBry, ..., rrToFBr,]))

where BI is the same as in the premises of rule (F'Calls), and the function rrToFB converts a RedRes
object into a functional block:

rrToFB (FullRR _ val)
rrToFB (PartialRR _ fb)

SimpleFB (Literal val)
fb

Let us now consider the cases when FunctionCall actually denotes record field access.

[(rt1,41), ..., (Ttm,im)] = findRecordTypes I ident
res; = getRecordFieldI'rt; rv 4

res,, = getRecordFieldI rt,, rv i,
(FullRR _ rv@(RecordVal), ident@(Identifier [|)) W pc concat [resi,...,resy,)

(»rcs)

18

Definitions of findRecordTypes and getRecordField. are standard.
Function call: other cases

Reduction is defined similarly.
Other cases of expressions

Reduction here is standard.

424 Values

Reduction here is standard.

425 Types

Reduction here is standard.

5 Thetypesystem of Aldor--

5.1 Theprinciples

In Aldor-- types are associated with
e types,

e values;

expressions;

definition table entries (DTEs);

identifier binding targets; and

functional blocks (FBS).

Note that types are not associated with definition tables.

In general, all Aldor-- objects which are defined at the definition-table level have explicit type infor-
mation contained in their definition table entries (DTESs). The type-checking algorithm is, in most cases,
based on retrieving this type information from the DTEs.

In Aldor--, definition table entries are objects of the Haskell type

data DTE = DTE String body typeExpr

By type-checking of a DTE we mean the process of verifying that the body has the type denoted by the
typeExpr. The body here is also known as the left-hand side (LHS), and the typeExpr is known as the
right-hand side (RHS) or the type-checking target. We generalise the terminology of left- and right-hand
sides to the type-checking of other Aldor-- constructs, such as checking function arguments (the left-hand
side) against formal parameters (the right).

The type-checking algorithm for Aldor-- operates in three modes.

19

N mode. In this case the right-hand side is absent. There is thus no target to type-check against, and so
the algorithm checks the left-hand side for the internal typing integrity. For some kinds of left-hand
sides (such as stand-alone Aldor-- expressions encapsulated in SimpleFBs, or definition tables), the
N mode is the only possible one.

Usually, but not always, type-checking in the N mode also produces the inferred type of the LHS.
Apart from the definition tables, the cases when the inferred type is not generated include ex-
pressions constructed by IfThenElse, RecordCtor and UnionCtor, and values constructed by
RecordVal and UnionVal, as such objects do not contain enough information for accurate type
inference.

T mode. In this mode the right-hand side is a manifest type. In most cases type-checking here also
proceeds by inferring the type of the LHS (via the N mode) and then by checking the equivalence
of the inferred and the target type. However, in cases (pointed out above) when the type of the LHS
cannot be accurately inferred, specific T mode algorithms are used instead.

E mode. In this final case, the RHS is a normalised type-forming expression, constructed by Identifier,
FunctionCall and IfThenElse. More details are given in Section ??.

The environment for type-checking is given by the Haskell data type RTCE introduced in Section 4.1. This
is the same environment that is used in reduction.

As was said earlier, Aldor-- permits the overloading of identifiers. During the process of type-checking
an expression e containing an overloaded identifier, x say, some bindings of x can be found to be incon-
sistent with type required for x in the context of e. Because of this, the type-checking operation returns
modified name bindings from which all inconsistent bindings have been removed.

The type-checking operation may also return the inferred type of the LHS. However, this is not a
necessary condition for successful type-checking in every case: exceptions include the special cases of
type-checking in the N mode mentioned above.

In the presence of overloading, type-checking can return multiple results, and so the result of type-
checking is given by a list of TCRes:

type TCRes = (NameBinds , Maybe Expr)

A failure of type-checking is signalled by an empty list of results.

The type of each definition table entry should be unique, since otherwise the definition itself is am-
biguous. So, in the case of DTEs, type-checking is also said to fail when a non-singleton list is produced.
This uniqueness requirement makes the type system non-monotonic: if a new definition of an existing
identifier is introduced, then it is possible that an existing DTE would become ambiguous, and thus fail to
type-check.

In the remainder of this section we present, in turn, the type rules for functional blocks, identifier
binding targets, DTEs, expresssions, values and types themselves. The type rules collectively define the
relation

'z :tb Q)

which means that ““the object = has a type given by the type-valued object ¢ under the name bindings b
in the context I"”’, where I" is of the Haskell type RTCE. The name bindings b in the right-hand side of the
typing relation is always a restriction of the name bindings contained in T.

In other words, relation 1 holds if any only if the result of type-checking of = against ¢, say tcrs, which
is of Haskell type [TCRes], contains a pair (b, t'). Since there is an explicit target type ¢, type-checking

20

of x is done in the T or E mode; ¢/, is the inferred type for z. Note that the inferred type ¢’ is not always
the same as the target type ¢. In general, due to the sub-typing relation between some of the Aldor-- types
(see Section 5.7), it is not even true that the normalisations of ¢ and ¢ must be equivalent. However, the
inferred type ¢’ has the property that must type-check against it under the same name bindings:

-z :tb.

The typing relation “:” introduced by 1 is single-valued; it associates a single type ¢ with the object x.
In general, as stated above, x can be characterised by multiple types. The set 7 (z) of all types (endowed
with the corresponding name bindings) for z is given by all derivations from the Aldor-- type rules:

T(x) = {(b,t)|T F = : ¢; b},

and the set of all types which can be inferred for x in all possible type-checking operations, is a sub-set of
T (z).

The type-checking algorithm can use the typing relation 1 for type-checking of the left-hand side in
the T or E mode, or for inferring the type of the left-hand side in the N mode. However, if the type of the
left-hand side cannot be inferred in the N mode (either because there is insufficient information for type
inference, or the LHS is a definition table), another typing relation is required:

wellTyped x; b 2

which means that x type-checks successfully for internal integrity under the restricted name bindings b.
The type rules presented in Sections 5.2-5.7 define both typing relations 1 and 2.

5.2 Functional blocks (FBs)

The type rules for Aldor-- functional blocks are given below:

I + fbt,bl b:b1®b2
T be:tbh I + wellTyped dt; b 11Binds b
- T el (SFB:) weo-Typedfh o WeSPTEY (NFB:)
I' (SimpleFBe) : t; b I' - (NestedFBdt fb) : t; b
I' = dte : t; b
d FPFB: VFB:
I' - (FParmFBdte) : t; b() I' - VoidFB : TrivT; getBinds F()

5.3 DTEsand definition tables

In a DTE, the body is type-checked against a reduced type expression, which must be indeed type-valued,
in the context containing the name bindings returned by that particular reduction. If the check suceeds, we
can associate both the original and the reduced type with the definition body:

I' = te: Type; by TI'y F te ~ nte; by T'y = fb : nte; by
' = (DTE te fb) : te; b3

where I'; = setBinds b; I' and I'y = setBinds by 'y,
A definition table is well-typed if all its DTEs type-check under compatible name bindings:

(DTE)

I + dtel . tl, bl b:®[b1, ce ey bm]
' + dte, : ty; by, wellBinds b (DT)
[' - wellTyped(DefTable{name; — dtey, ..., name,, — dte,,}_); b '

21

5.4 ldentifier binding targets

Both DefTargs and FPTargs encapsulate definition table entries, and are similar from the type-checking
point of view; the difference between them lies in the semantics of name bindings construction (Section ??)
and reduction (Section 4.2.3):

' = dte : t; b I' - dte : t; b
(DTarg :)
I' - (DefTargdte) : t; b I' + (FPTargdte) : t; b

(FPTarg :)

5.5 Expressions
55.1 Literal
A Literal has the same type as the value encapsulated in it:

'Fov:tb
' - (Literalw) : t; b

(Literal)

5.5.2 ldentifier

The type of an Identifier is determined by its particular binding target being considered, under the
name bindings restricted to that target:

I' F targ € lookupBinds(getBinds I') (ident@(Identifier _))
I F targ : t; b

I :
T F ident : & b (Ident :)

where I = modifyBinds (ident — [targ]) L.

55.3 AndList, OrList

We give the type rule for AndList only; the rule for OrList is similar. All operands of AndList must be
Booleans, and the result is a Boolean as well:

I' + fb; : BooleanT; b b=Q[bi, ..., b
I' + fb, : BooleanT; b, wellBinds b

I' - (AndList [fby, ..., fb,]) : BooleanT; b

(AndList :)

554 IfThenElse

There are three type rules here. The first one states that the conditional expression is well-typed if the
condition if of type Boolean and the branches are of equivalent types. This rule is used by the N mode
type-checking of the conditional expression; it does not allow us to infer the type of the whole expression,
since we may not be able to unify the types of the branches:

I' + cond : BooleanT; by 't =ty
I' - then : tl, b1 b= ®[b0,b1,b2]
I' + else : ta; by wellBinds b

ITE :
I' - wellTyped (IfThenElse cond then else); b (1)

22

The second rule is used by the type-checking algorithm operating in the T mode, that is, when there is a
single target type ¢ for both branches. In this case, the inferred type of the conditional expression will also

be ¢:
I' = cond : BooleanT; bgy b = Q|bo, b1, ba]

I' = then : t; by
I' F else : t: by wellBinds b

I' - (IfThenElse cond then else) : t; b

The third rule is a special case when the target type ¢ is a type-valued conditional expression itself, so the
second rule is not applicable. In this case, the conditions of the LHS and the RHS must be equivalent, and
both branches of the LHS must type-check against the corresponding branches of the RHS. This rule is
used by the type-checking algorithm operating in the E mode:

(ITE 1)

F rhs@Q(IfThenElse rcond rthen relse) : Type; by I' + lcond = rcond

F lcond : BooleanT; by b = Qb1 b, bs, by

F Ithen : rthen; bs

F lelse : relse; by wellBinds b
I' - (IfThenElse lcond [then lelse) : rhs; b

i Bl M M|

(ITE :3)

5.5.5 FunctionCall

As mentioned earlier (Section 4.2.3), in Aldor-- the FunctionCall expression can denote application of a
user-defined function (lambda object), application of a built-in function, record field access, or union field
access, depending on the type of the callable object.

If the callable has type FunctionT or RecordT, so the FunctionCall is a lambda object application
or a record field access, then the type of the callable can be dependent. For a FunctionT type

FunctionT [py,...,pN] 7T,

where pq, ..., py are FParmFBs denoting the formal function parameters, and ¢ is a SimpleFB denoting
the function return type, the type expression of p; (¢ = 2, ..., N) can contain dependent identifiers, that
is, identifiers bound to the names declared in py, ..., p; 1.

In other words, the type of the parameter p; can depend on the values of the actual arguments ay, ..., a;_1
corresponding to the parameters py,...,p; 1. The return type rt can also contain dependent identifiers
(bound to any of the pq, ..., pn), and it can thus depend of any of the arguments aq, ..., axy.

Conversely, if the parameter p; (j = 1, ..., N) declares a name to which any of the identifiers occurring
iNpjt1,...,pn~,rt are bound, we will call the parameter p; to be depended-upon.

Therefore, in order to type-check a FunctionCall expression with the callable being of a (poten-
tially dependent) FunctionT type, we first need to evaluate the types of the parameters py, ..., px in the
dependent environment. The dependent environment I is formed from the original reduction and type-
checking environment I" by reducing the actual call arguments (or actual record fields) a; corresponding
to the depended-upon function parameters p;, and pushing the reduction results on the stack. This is done
by the Haskell function

smartPush [ay,...,an] [p1,... DN, rt] T

Generally speaking, since reductions are multi-valued in Aldor--, the smartPush function produces a set
of new environments {I''} for a single original environment I". This set can be defined via the following

23

derivation rule for each individual T":

I'=oa;, ~ 1y

' = (bs)
isDependedUpon pj, [pj,+1,---,pn,rt] [F C e o
JK JK
b = etBinds r,,, ..., getBinds r;
isDependedUpon pj, [Pjx+1,---,PN,Tt] T welllg?n[is b n & in
- (smartPush)
I' = (bv [{p]d = Ty Pig ij}] ++ 3)
I € smartPushay,...,an]|[p1,... pN,7t] T
©)
Here the predicate
isDependedUpon p [q1,...,qn] [

is true iff there exists index k (1 < & < M) and the identifier 7 contained in the functional block g, such

that

p € (lookupBinds (getBinds I') 7) .

The function given by rule (3) is called smartPush because it “intelligently” reduces not all the actual

arguments [ay, ..

., -N] (that would be wasteful), but only those which correspond to the depended-upon

function parameters. If there are no such parameters, then smartPush produces a single environment

I"=r.

We can now present the type rule for the application of a user-defined function. The FunctionCall
arguments are checked against the formal parameters in the dependent environment I, and the inferred
type of the application is the reduced function return type rt':

I' + callable : (FunctionT [py,...,pn] rt); bo

I = smartPush|ay,...,ay] [p1,...,DPnN,rt] (setBinds by I)
I' F [ah'"aaN] ‘dep [plaapN]a b

[= setBindsbI’

" b rt ~ rt

(FC)

I' - (FunctionCall callable |ay,. ..

,an]) : getExpr rt'; getBinds rt’

Note that the function getExpr is required in the above rule to convert ¢ (an object of the meta-type
RedRes) into an Expr, SO it can be used in the context where a type is required.

The relation :4, Which was used above means that its LHS (a vector of any FBs) has the dependent
vector type given by the RHS (a vector of FParmFBs). This relation is defined by the following rule:

I' F (getTypepi) ~ r b = lb1,...,bn], wellBindsb
. [" = setBindsb T
I' F (getTypepny) ~ TN
I F a; : (getExprry); b}
by = getBindsnr
I F ay : (getExprry); by
by = getBindsry v = QIb),...,by], wellBindsV DenV/
I' b a1,...,an] ‘aep [P15--- oN]; Y (DepVec)

Here the function getType ::
FParmFB:

FB -> Expr returns the type expression of the DTE encapsulated in an

24

getType (FParmFB (DTE _ _ typeExpr)) = typeExpr

Similarly, in a RecordT type
RecordT [py,...,pnN]

the type of any field p; (i = 2,..., N) can contain dependent identifiers bound to py, ..., p;—_1. Thus, the
type of p; can depend on the values of the fields a4, ..., a;_; in the corresponding reduced callable object
which would be given by

I' F callable ~ FullRR b, (RecordVal [ay,...,ay])
or 4)
I' F callable ~ PartialRR by (RecordCtor [ay,...,ay]) -

The field p; (= 1,...,N — 1) is called depended-upon if any of the subsequent field declarations
Pj+1, - - -, P contains an identifier bound to p;.

The function smartPush for a RecordT is defined by a rule similar to 3 above, with the exception that
it does not involve the functional block rt. The FunctionCall expression (which in this case denotes
a record field access) has a single argument which must be an identifier acting as a record field selector.
The type of FunctionCall is in this case the type of the selected record field reduced in the dependent
environment I'”:

I = setBinds by '

I+ callable : (RecordT [py,...,pnN]| Tt); by

3 k. (FPTargpi) € (lookupBinds by (iQ(Identifier _)))
I' = smartPush [ay,...,an] [p1,...,pn] (setBinds by)
I'" + (getTypepy) ~

FC:
I' (FunctionCall callable [i]) : t'; getBinds ¢’ (2)

In the type rule (F'C :5) above, the name bindings b, and the actual record fields [a4, ..., ay] are deter-
mined by pattern-matching rule 5. If, however, the pattern-matching fails (that is, the callable cannot
be reduced to either RecordVal or RecordCtor, e.g. it is normalised to an Identifier), then we take
by = getBinds I', IV = I = I". This means that no dependent environment is formed in that case, and the
dependent identifiers occurring in the type expressions of p, . .., py would be normalised to themselves.

Note that, unlike the case of lambda object application, type-checking of a dependent record field
access expression requires reduction of the callable object.

In the remaining two cases, when the callable object is a built-in function or a union, the type of the
callable cannot be dependent. Furthermore, the parameter types and the return type of a bult-in function
are always given by elementary manifest types which do not require any reduction, so the type rule for the
built-in function application is straightforward:

I' F callable : (BuiltInT [ty,...,tx] 7t); o
I = setBindsby
IV F ay - tl, b1

P’ F ay - tN, bN
b = Qlb1,...,by], wellBindsb
I' + (FunctionCall callable [ay,...,an]) : rt; b

(FC 23)

25

However, if the callable has a UnionT type, there is a further restriction that the union object (con-
structed by a UnionVal or a UnionCtor) must be tagged with the same identifier as the argument of
the FunctionCall. Thus, in this case the callable has to be reduced and its tag extracted. If the tag cannot
be obtained (because the callable does not reduce to either a UnionVal or a UnionCtor), type-checking
fails:

I' F callable : (UnionT [py,...,pN]); b1

3 k. (FPTargpi) € (lookupBinds by (iQ(Identifier _)))

[= setBindsb; I

I'" F callable ~ rc

[= setBinds (getBinds rc) I”

I'" F (getTagrc) = i

I'" F (getTypepr) ~ t

I - - S - (FC 34)
(FunctionCall callable [i]) : t; getBinds ¢

Here the function getTag :: RedRes -> Expr is given by the equations
getTag (FullRR _ (UnionVal tag _)) = tag

getTag (PartialRR _ (SimpleFB (UnionCtor tag _))) = tag

55.6 RecordCtor

A RecordCtor expression can be type-checked in the N mode or the T mode. However, type inference
in the N mode may be inaccurate (too general): we would not be able to infer a dependent record type
because there is no information about the dependencies (i.e. constraints on the fields’ types) in the record

constructor:

' F a:t; by b= ®br,...,by]
r I— an : ty: by wellBinds b
(RecordCtor [ay,...,ay]) : (RecordT [ty,...,tN])

In the T mode, if the target record type is dependent, we use the smartPush function to construct the new
type-checking environment (cf. Section 5.5.5), and type-check the record constructor arguments in that
environment against the declared field types:

: b(RC’tor 1)

I = smartPush|ay,...,an] [p1,...,0n8] T
I' + Ja1,...,an] td4ep [P1,---,Pn]; b
(RecordCtor [ay,...,ay]) : (RecordT [ti,...,txn])

: b(RC’tor 2)

5.5.7 UnionCtor

In the N mode, we can only type-check the components of a UnionCtor expression for internal con-
sistency; the type of the expression cannot be inferred since we have no information about all possible
members of the union:

I' + wellTypedi@(Identifier _); b; b = b Qb
I' - wellTyped f; bo wellBinds b

I' F wellTyped (UnionCtori f); b

(UCtor +)

In the T mode, when the target union type is known, we check that the selector identifier (first argument of
the UnionCtor) is indeed bound to a field of that union, and the second argument of UnionCtor satisfies

26

that type:

3 k. (FPTargpi) € (lookupBinds (getBinds I') (i@(Identifier .)))
' F f: (getType py); b
I' + (UnionCtori f) : (UnionT [p1,...,pN]); b

(UCtor :3)

55.8 UnionCase

The first argument of a UnionCase expression must have a UnionT type, and the second one must be an
identifier. The type of expression is always Boolean:
' - f: (UnionT); b
I' - (UnionCase f i@(Identifier _)) : BooleanT; b

(UCase :)

559 RestrictType

The RestrictType expression operates on the whole collection of types which can be associated with its
argument. Since we are are using single-derivation notation for our type rules, the rule for RestrictType
just asserts that if a functional block f has, in particular, some type ¢, then restriction of f to any type ¢’
which is equivalent to ¢ succeeds. The type of the expression can be either ¢ or ¢':

r-f:t;6 TrHt=4

(RestrictType ft'): t; b
(RestrictType ft'): t'; b

T (RestrType :)
I+

55.10 ConvertTo

As was already mentioned in Section 4.2.3, there is no uncontrolled pretend in Aldor--: explicit type

coercions are limited to compatible types. The types are compatible if if their ultimate representations are
equivalent, so the following type rule apply:

F'Fz:tb T F (ultimRept) = (ultimRept’)

I' (ConvertToxt'): t';b

Here the function ultimRep is the same as in Section 4.2.3.

(ConvertTo)

55.11 Addil, Add2
5.5.12 Withl, With2
5.5.13 VoidExpr

5.6 Values
5.7 Types

6 An overview of the Aldor-- implementation

6.1 Compilation processfor theoriginal Aldor

The original Aldor compiler was written in C, and was a proprietary software owned by IBM and NAg.
The compiler is now available for free download from http://www.aldor.org, in the form of pre-
compiled binaries for most common platforms (such as GNU/Linux on Intel x86). The Aldor compiler

27

is still not available as Open Source software, although most of the Aldor libraries have been released as
Open Source.

For a given Aldor source file (*.as”), the Aldor compiler, called axiomx1, executes the following
translation steps:*

1.

The source is pre-processed: #include directives (similar to those used in C source files) are carried
out, and macro expansion is performed.

. The pre-processed source is parsed and converted into an intermediate in-memory representation,

— the Abstract Syntax Tree (AST).

. The AST is type-checked. However, type-checking performed by the original Aldor compiler is

unnecessary restrictive. In particular, target type expressions are not evaluated, and the type-checker
requires syntactic equivalence between the type of the left-hand side and the target (right-hand side)

type.

The AST is converted into a platform-independent byte-code representation called FOAM (First-
Order Abstract Machine). The FOAM code is similar in its purpose to Java Byte-Code. It provides
an abtraction layer for compiled Aldor programs, to make them independent from the underlying
hardware and the operating system.

. The FOAM code can then be interpreted, or stored in platform-independent object libraries (. ao0”

files) for future use, or converted into C code and then compiled into a “native” (platform-specific)
binary format using a C compiler available for that platform. Note that the Aldor compiler itself
does not generate any native binary code.

This explains why the original Aldor compiler cannot evaluate target type expressions during type-checking:
it can only interpret FOAM byte-code which is not yet generated at the type-checking phase.

6.2

Compilation processfor Aldor--

To rectify this problem, a new type-checking and evaluation engine (called AETHER) has been implemented
for Aldor--. It is written in Haskell ?? and operates as a co-process to the original axiomx1 compiler,
communicating with the latter through external files. The executable code of the AETHER is generated
by the Glasgow Haskell Compiler [4] (GHC), and is currently availabe for the Linux/x86 platform. The
AETHER source code is completely platform-independent, and can be ported to any platform supported by
the GHC.

The algorithm of AETHER is the following:

1.

The axiomx1 compiler was modified (under the permission of the copyright owners) to support a
new -Fhs command-line option which allows the user to output the generated abstract syntax tree
into an external file.

. The AETHER program is then invoked. It reads the AST from a file and converts it into the hierarchy

of functional blocks described in Section 3. Such a conversion is necessary because the original
AST structure does not closely reflect the functional structure of Aldor-- programs, and is not very
well suitable for type-checking.

. The program is decorated by enumeration attributes and links: unique enumerators are given to all

functional blocks, definitions and occurrencies of identifiers, and up-links are constructed between
the functional blocks to provide a hierarchy of enclosing name scopes.

28

4. Next, each identifier within the program is bound to all its possible target(s); in other words, name
bindings are constructed for the program structure in question (see Section ??). From the imple-
mentational point of view, name bindings is a finite map from the set of indentifiers’enumerators
to the power set of bind targets. The bind targets are uniquely identified by the enumerators of the
objects they contain, e. g. definitions or functional blocks.

5. The program (i. e. the top-level FBlock) is then recursively type-checked according to the type rules
presented in Section 5. Target type expressions are reduced whenever necessary. The reduction and
type-checking processes are closely interleaved.

Name bindings play the central role in both evaluation and type-checking operations. The bind-
ings can only be reduced, never expanded, at this stage. Reduction of name bindings occurs when
improper bindings are removed as a result of type-checking, or by run-time constraints during the
reduction of target type expressions. in this way, overloaded names are resolved. For a well-typed
and unambiguous program, each identifier must be bound to exactly one target at the end of the
type-checking stage.

6. If type-checking succeeds, the AETHER co-process can interpret the Aldor-- program in question,
without the need to resume the main Aldor compiler (axiomx1).

The user may also want to generate the FOAM code for that program, so it can be integrated with
other Aldor programs (not necesserily Aldor-- ones). The problem is, however, whether the FOAM
generation component of axiomx1 would be able to produce a valid byte code for a program which
is considered ill-typed by the original Aldor type-checker, but was successfully type-checked by
AETHER. This issue requires further investigation. If problems with FOAM code generation do occur,
the easiest solution would be to export a modified AST back to the main translator. This new AST
would contain explicit type coercion (pretend) nodes to make it formally acceptable for the original
type-checker as well. This method has been validated in [15]: it was demonstrated that using the
pretend expressions in standard Aldor allows us to by-pass the limitations of its type-checker and
still generate valid FOAM and executable programs.

7 Applicationsof Aldor--

This section introduces a variety of examples in Aldor--. We first revisit the examples given by way of
motivation in [15] and then, building on these examples, we give a logical derivation in the theory of
monoids.

7.1 Logical examples, revisited

The paper [15] contains a variety of logical examples, written in Aldor. Here we show how these examples
can be rewritten in Aldor--, and point to the differences that result.

Implication

Implication is represented by the function type, since a proof of an implication (A=>B) can be thought of
as a transformation that turns a proof of A (its input) into a proof of B (its output). A proof of an implication
is introduced by forming a function; a proof of an implication (A=>B) is eliminated by applying it to a
proof of A to yield a proof of B; this is the modus ponens rule. An example is given in Figure 2.

29

—-— The example ((A=>(B=>C))=>(A=>B)=>(A=>C))

S (A:Type, B:Type, C:Type, p: ((a:A) -> ((b:B)->C)))
((q: ((a:A)->B)) —> ((a:A)->C))

(q: ((a:A)->B)) : ((a:A)—>C) +-> ((a:A):C +> ((p a)(q a)));

Figure 2: An example using implication: the S combinator

-- The conjunction type, And.

And (A: Type, B: Type): Type ==
add
{ Rep == Record(fst:A,snd:B);

andIntro(a:A,b:B):% == per [a,b];
andElim1(p:%) :A == (rep p).fst;
andE1im2(p:%) :B == (rep p).snd; };

-- An example proof that A&B => B&A

flip(A:Type,B:Type,p:And(A,B)) :And(B,A) ==
{ X: Type == And (A,B); Y: Type == And (B,A);

(andIntro $ Y) ((andElim2 $ X) (p), (andEliml $ X) (p)); };

Figure 3: Aldor-- conjunction and an example proof

Conjunction

The conjunction operation, And, is introduced in Figure 3 as a function over types: it has two arguments
of type Type and it returns a result of type Type. The result is an abstract data type, whose representation
is a record with fields £st and snd of type A and B, respectively. Logically this corresponds to the fact that
a proof of A&B is given by a proof of A together with a proof of B.

Introduction and elimination operations construct and destruct a record, modulo conversions between
the ADT and the concrete, carrier, type given by the functions rep and per.

In the example proof in Figure 3 the qualification operation $ is used to qualify the operations andIntro,
andElimi1 and andElim2. $ forms a qualified name, by way of disambiguating the use of an (unqualified)
identifier, as in Aldor itself.® Note that X and Y are used as placeholders for qualifiers for the Add1 oper-
ation; a qualifier is required to be an Identifier, rather than an arbitrary expression. In the particular
case here the disambiguation has the effect of choosing the particular instance at which to use a param-
eterised ADT: conjunction elimination is used over And (A,B), whereas introduction is used to introduce
an element of And (B, A).

In Figure 4 conjunction is presented in an unencapsulated form. The type AND(A,B) actually is the
type Record(fst:A,snd:B), and the introduction and elimination functions are operations over records,

éDisambiguation using $ is discussed in Section 8.3 of the Aldor User Guide [16].

30

-- The conjunction type, AND, unencapsulated.
AND (A:Type,B:Type): Type == Record(fst:A,snd:B);

ANDIntro(A:Type,B:Type,a:A,b:B):AND(A,B) == [a,b];
ANDElim1 (A:Type,B:Type,p:AND(A,B)) :A == p.fst;
ANDElim2(A:Type,B:Type,p:AND(A,B)):B == p.snd;

—-— An example proof that A&B => B&A

flip(A:Type,B:Type,p:AND(A,B)) :AND(B,A) ==
ANDIntro(B,A,ANDElim2(A,B,p) ,ANDE1lim1(A,B,p));

Figure 4: Unencapsulated conjunction and an example proof in Aldor--

unmediated by rep and per. For this approach to work in Aldor-- it is necessary to have Type expressions
evaluated: for example, for the definition of ANDIntro to typecheck it is necessary for the type AND(A,B)
to evaluate to the record type Record(fst:A,snd:B).

In the unencapsulated case the particular type at which an introduction or elimination rule is applied
is determined by the explicit type parameters which constitute the first two arguments of each of these
functions. Contrast this with the encapsulated treatment, where the qualification operation, $, is used
to select the type at which the operations are used. In a language with parametric polymorphism, this
information would be supplied implicitly, but the polymorphism in Aldor--is explicit, given by the Type
parameters.

Note that in Aldor itself, the unencapsulated implementation requires explicit type conversion, using
pretend, from the type expression AND (A, B) to its defined value as a record type.

Digunction

A disjunction is represented by a union type: a proof of A|B is, constructively, either a proof of A or a
proof of B. A proof of a disjunction is constructed by injecting the proof of the corresponding component
part into the union type. A disjunction is eliminated by proof by cases: to prove C from A|B it is necessary
to prove it, separately, from A and from B.

Two implementations of disjunction are given. Figure 5 implements it as an ADT, and gives a proof
of the example ((A|B)=>C) => (A=>C)&(B=>C). The same example is proved in the unencapsulated
treatement given in Figure 6; the structure of the two proofs is similar, and the contrast between the
two echoes the £1ip example. In the encapsulated case, qualification (using $) is used to identify the
(type-)correct instance of the various functions; in the unencapsulated case, explicit type arguments supply
the same information.

Negation

The constructive intrepretation of negation is defined using an absurd proposition: that is, a proposition
that has no proof, or equivalently, a type that has no elements. This is the Aldor-- type Exit. The negation
of A is then defined to be

(a:A)-> Exit

31

-- The disjunction type, Or

Or(A:Type, B:Type) : Type ==
add { Rep == Union(inl:A, inr:B);

orIntrol(a:A):% == per (union (inl==a));
orIntro2(b:B):% == per (union (inr==b));
orElim (C:Type, f: (a:A)->C, g: (b:B)->C, p:%) : C

{ wval: Union(inl:A,inr:B) == (rep p);

if (val case inl) then f(val.inl) else g(val.inr) };

s
-- The example that ((A|B)=>C) => (A=>C)&(B=>C)

andOr (A:Type, B:Type, C:Type, p: (x: 0r(A,B)) -> C)
And((a:A)->C, (b:B) ->C)
{ X: Type == And ((a:A)->C, (b:B) ->C);
Y: Type == Or (A, B);

(andIntro $ X)
((a:A):C +-> p ((orIntrol $ Y) (a)),
(b:B):C +-> p ((orIntro2 $ Y) (b)))

Figure 5: Aldor-- disjunction and an example proof

32

—-- The unencapsulated disjunction type, OR

OR(A:Type, B:Type) : Type == Union(inl:A, inr:B);

ORIntrol(A:Type,B:Type,a:A):0R(A,B) == union (inl==a);
ORIntro2(A:Type,B:Type,b:B):0R(A,B) == union (inr==b);
ORElim(A:Type,B:Type,C:Type, f: (a:A)->C, g: (b:B)->C, p:0R(A,B)) : C
== if (p case inl) then f(p.inl) else g(p.inr) ;
¥

-— The example that ((A[|B)=>C) => (A=>C)&(B=>C)

andOr (A:Type, B:Type, C:Type, p: (x: OR(A,B)) -> C)
AND((a:A)->C, (b:B) —->C)
== ANDIntro((a:A)->C,
(b:B)->C,
(a:A):C +-> p (ORIntrol(A,B,a)),
(b:B):C +-> p (ORIntro2(A,B,b)));

Figure 6: Unencapsulated disjunction and an example proof

From a proofs of A and its negation it is then possible to derive a proof of Exit, which in turn leads
to a proof of any formula, through exfalso. Encapsulated and unencapsulated variants of negation are
presented in Figures 7 and 8.

Adding the law of the excluded middle (LEM) makes the logic classical. The proof in Figure 9 shows
that the law of double negation elimination follows from LEM. We leave the proof of this in the unencap-
sulated version as an exercise for the reader.

7.2 Equality

We treat equality axiomatically, by introducing operations forming both types and values without definition
bodies; their definitions simply declare their types, and type checking will ensure that they are only used
in type-correct ways. Eq is the type constructor, and eqRefl, eqSymm and eqTrans are the three axioms
for an equivalence relation.

The version of eqSubst presented here is a special case of a general substitution mechanism:’

leibnitz: (T: Type, a: T, b: T, e: Eq (T, a, b), P:(x:T)->Type, p: P(a)) -> P(b)
by taking P to be
(x:T): ... => Eq(T1, patt(a), patt(x))

where P(a) will be Eq(T1, patt(a), patt(a)), which is proved by the reflexivity axiom, eqRef1.

33

—-- The negation type: Not

exfalso : (e: Exit, B: Type) -> B; -- No body; this function returns ERROR

Not (A:Type) : Type
== add
{ Rep == (a:A)-> Exit;
notIntro (p: (a:A) -> Exit) : % == per p;
notElim (p:%, q:A): Exit == (rep p) q ;

contraRule: (B:Type, p:%, q:A) -> B
== exfalso (notElim (p,q), B);
s

—-— Example ((A=>B)&(A=>"B))=>(A=>C)
contraAx (A:Type, B:Type, C:Type, p: And((a:A)->B, (a:A)->Not(B)))
:z X: Type == And((a:A)->B, (a:A)->Not(B));
(a:p):C +—>
contraRule(C,

((andElim2 $ X) p) a,
((andEliml $ X) p) a);

Figure 7: Aldor-- negation and an example

34

((a:A)-—>C)

—-- The unencapsulated negation type: NOT
exfalso : (e: Exit, B: Type) -> B; -- No body; this function returns ERROR
NOT(A:Type) : Type == (a:A)-> Exit;

notIntro (A:Type, p: (a:A) -> Exit) : NOT(A) == p;
notElim (A:Type, p:NOT(A), q:A): Exit =1pq;

contraRule: (A:Type, B:Type, p:NOT(A), q:A) -> B
== exfalso (notElim (A,p,q), B);

-- Example ((A=>B)&(A=>"B))=>(A=>C)

contraAx (A:Type, B:Type, C:Type, p: AND((a:A)->B, (a:A)->NOT(B))) : ((a:A)->C)

{ X: Type == (a:A)->B; —-—- used below as
Y: Type == (a:A)->NOT(B)); -- abbreviations
(a:h):C +->

contraRule(B,C,
(ANDE1im2(X,Y,p) (a)),
(ANDElim1 (X,Y,p) (a)));

Figure 8: Aldor-- negation and an example, unencapsulated

—-— Example ((A|7A)&™"A => A)

notNot (A:Type, p:0r(A,Not(A)), q:Not(Not(A))): A ==
{ N: Type == Not (A);

NN:Type == Not (Not (A));

X: Type == Or (A,N);

(orElim $ X) (A,
(a:A):A +> a,

(r: Not(A)):A +-> (contraRule $ NN) (A,q,r),
P); };

Figure 9: Double negation elimation follows from the law of the excluded middle

35

-- The Equality Type Axioms:

#include "basiclib"

Eq: (T: Type, a: T, b: T) -> Type;

eqRefl: (T: Type, a: T) -> Eq (T, a, a);

eqSymm: (T: Type, a: T, b: T, e: Eq (T, a, b)) -> Eq (T, b, a);

eqTrans: (T: Type, a: T, b: T, c: T, el: Eq (T, a, b), e2: Eq (T, b, c)) —->
Eq (T, a, c);

eqSubst: (T: Type, a: T, b: T, e: Eq (T, a, b), T1:Type, patt: (z: T) -> T1) ->
Eq (T1, patt(a), patt(b));

Figure 10: The axioms for equality

MonoidGen: Category == with

{

mult: (a: %, b: %) => %;
I: %;

—- Monoid axioms:

leftUnit: (a: %) -> Eq (4, a, mult(a,I));
rightUnit: (a: %) -> Eq (4, a, mult(I,a));
assoc: (a: %, b: %y, c: %) —>
Eq (%, mult(a, mult (b,c)), mult(mult (a,b), c));

Figure 11: Axiomatising the Monoid category

36

Monoid02: Category == MonoidGen with

{

order2: (a: %) -> Eq (%, (mult$MonoidGen) (a,a), (I$MonoidGen));

}

comm?2 (M2: Monoid02, a: M2, b: M2):
Eq (M2, (mult$M2) (b,a), (mult$M2) (a,b)) == ...

Figure 12: The Monoid02 category and the communtativity assertion

7.3 Axiomatising the monoid category

Figure 11 contains the category of monoids, axiomatised, as first discussed in [15]. Note that we cannot
use the infix operator “** for multiplication here, since **’ is by default left-associative, so the Aldor parser
would re-combine exprs involving “*” in a way we don’t want. We therefore use mult instead.

7.4 An algebraic proof

One of the first non-trivial results of the theory of monoids is that a monoid in which every square is equal
to the identity is in fact abelian. In our proof we show that in such a monoid, axiomatised by Monoid02 in
Figure 12, has the required property by defining the value comm2, the commutativity assertion. The value
comm? is the final value in a series of proofs, given by

The full proof CommMonoid.as can be found on the project web page.

8 Conclusionsand Future Work

We would like to acknowledge the assistance of Stefan Kahrs and Claus Reinke for discussions about
overloading.

References

[1] Alfa. Available from http://www.math.chalmers.se/“hallgren/Alfa/.

[2] Giuseppe Castagna and Gang Chen. Dependent types with subtyping and late-bound overloading.
Information and Computation, 168(1), 2001.

[3] Nigel J. Cutland. Computability. Cambridge University Press, 1981.

[4] The Glasgow Haskell Compiler. Available from
http://www.dcs.glasgow.ac.uk/fp/software/ghc/, 1998.

[5] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type analysis. In
Principles of Programming Languages 22, pages 130-141, San Francisco, CA, January 1995.

"Named after the mathematician Gottfried Wilhelm Leibnitz (1646 - 1716), who coined the principle of ‘substitution of
equals for equals’.

37

(bxa) * (b*xa)
(bxa)* (b*xa)
((b*a) *b) *a
((b*a) *b) *a
(((b*a)*b)*a) *a
a

I*xa
(((b*a)*b)*a)*a
((b*a) *b) * (axa)
axa

I

(b*a) *b
((b*a) *b) *I
(b*a) *b

(b*a) *b

(b*a) *b
((b*a) *b) *b
(bxa) * (b*b)

b*b

I

b*xa

(bxa)*I

b*xa

b*a

b*xa

I

((b*a) *b) *a
(b*a) * (b*a)

I

I*xa

Ixa

a

a
(((b*a) *b) *xa) *xa
I

axa

((b*a)*b) *I
((bxa) *b) * (a*a)
((bxa) *b) * (a*a)
(((b*a) *b) *xa) *xa
a

a*b

((b*a) *b) *b

I

b*xb

(b*a)*I
(bxa) * (b*b)
(bxa) * (b*b)
((b*a) *b) *b
ax*b

Figure 13: Proving comm?2

38

[6] Ralf Hinze and Johann Jeuring. Generic Haskell: Practice and Theory. In Lecture Notes of the
Summer School in Generic Programming, 2002/2003.

[7] John Hughes and Simon Peyton Jones, editors. Report on the Programming Language Haskell 98.
http://www.haskell.org/report/, 1999.

[8] Richard D. Jenks and Robert S. Sutor. Axiom: The Scientific Computation System. Springer, 1992.

[9] R. Ldmmel and J. Visser. Typed Combinators for Generic Traversal. In Proc. Practical Aspects
of Declarative Programming PADL 2002, volume 2257 of LNCS, pages 137-154. Springer-Verlag,
January 2002.

[10] The LEGO Proof Assistant. Available from http://www.dcs.ed.ac.uk/home/lego.

[11] Erik Poll and Simon Thompson. Integrating Computer Algebra and Reasoning through the Type
System of Aldor. In Héléne Kirchner and Christophe Ringeissen, editors, Frontiers of Combining
Systems, 2000. LNCS 1794, Springer-Verlag, 2000.

[12] B. Stroustrup. The Design and Evolution of C++. Addison Wesley, 1994.

[13] The Coq Development Team. The Coq Proof Assistant Reference Manual, Version 7.3. Technical
report, INRIA, 2002. Available from http://pauillac.inria.fr/coq/doc/main.html.

[14] Simon Thompson. Type Theory and Functional Programming. International Computer Science
Series. Addison-Wesley, 1991.

[15] Simon Thompson. Logic and Dependent Types in the Aldor Computer Algebra System. In Man-
fred Kerber and Michael Kohlhase, editors, Symbolic Computation and Automated Reasoning: the
Calculemus 2000 Symposium. A. K. Peters, 2001.

[16] S.M. Watt, P.A. Broadbery, S.S. Dooley, P. Iglio, J.M. Steinbach S.C. Morrison, and R.S. Sutor.
AXIOM Library Compiler User Guide. The Numerical Algorithms Group (NAG) Ltd., 1994.

39

